| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: keir@google.com (Keir Mierle)
 
- //         sameeragarwal@google.com (Sameer Agarwal)
 
- //
 
- // This tests the TrustRegionMinimizer loop using a direct Evaluator
 
- // implementation, rather than having a test that goes through all the
 
- // Program and Problem machinery.
 
- #include <cmath>
 
- #include "ceres/autodiff_cost_function.h"
 
- #include "ceres/cost_function.h"
 
- #include "ceres/dense_qr_solver.h"
 
- #include "ceres/dense_sparse_matrix.h"
 
- #include "ceres/evaluator.h"
 
- #include "ceres/internal/port.h"
 
- #include "ceres/linear_solver.h"
 
- #include "ceres/minimizer.h"
 
- #include "ceres/problem.h"
 
- #include "ceres/trust_region_minimizer.h"
 
- #include "ceres/trust_region_strategy.h"
 
- #include "gtest/gtest.h"
 
- namespace ceres {
 
- namespace internal {
 
- // Templated Evaluator for Powell's function. The template parameters
 
- // indicate which of the four variables/columns of the jacobian are
 
- // active. This is equivalent to constructing a problem and using the
 
- // SubsetLocalParameterization. This allows us to test the support for
 
- // the Evaluator::Plus operation besides checking for the basic
 
- // performance of the trust region algorithm.
 
- template <bool col1, bool col2, bool col3, bool col4>
 
- class PowellEvaluator2 : public Evaluator {
 
-  public:
 
-   PowellEvaluator2()
 
-       : num_active_cols_(
 
-           (col1 ? 1 : 0) +
 
-           (col2 ? 1 : 0) +
 
-           (col3 ? 1 : 0) +
 
-           (col4 ? 1 : 0)) {
 
-     VLOG(1) << "Columns: "
 
-             << col1 << " "
 
-             << col2 << " "
 
-             << col3 << " "
 
-             << col4;
 
-   }
 
-   virtual ~PowellEvaluator2() {}
 
-   // Implementation of Evaluator interface.
 
-   SparseMatrix* CreateJacobian() const final {
 
-     CHECK(col1 || col2 || col3 || col4);
 
-     DenseSparseMatrix* dense_jacobian =
 
-         new DenseSparseMatrix(NumResiduals(), NumEffectiveParameters());
 
-     dense_jacobian->SetZero();
 
-     return dense_jacobian;
 
-   }
 
-   bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options,
 
-                 const double* state,
 
-                 double* cost,
 
-                 double* residuals,
 
-                 double* gradient,
 
-                 SparseMatrix* jacobian) final {
 
-     const double x1 = state[0];
 
-     const double x2 = state[1];
 
-     const double x3 = state[2];
 
-     const double x4 = state[3];
 
-     VLOG(1) << "State: "
 
-             << "x1=" << x1 << ", "
 
-             << "x2=" << x2 << ", "
 
-             << "x3=" << x3 << ", "
 
-             << "x4=" << x4 << ".";
 
-     const double f1 = x1 + 10.0 * x2;
 
-     const double f2 = sqrt(5.0) * (x3 - x4);
 
-     const double f3 = pow(x2 - 2.0 * x3, 2.0);
 
-     const double f4 = sqrt(10.0) * pow(x1 - x4, 2.0);
 
-     VLOG(1) << "Function: "
 
-             << "f1=" << f1 << ", "
 
-             << "f2=" << f2 << ", "
 
-             << "f3=" << f3 << ", "
 
-             << "f4=" << f4 << ".";
 
-     *cost = (f1*f1 + f2*f2 + f3*f3 + f4*f4) / 2.0;
 
-     VLOG(1) << "Cost: " << *cost;
 
-     if (residuals != NULL) {
 
-       residuals[0] = f1;
 
-       residuals[1] = f2;
 
-       residuals[2] = f3;
 
-       residuals[3] = f4;
 
-     }
 
-     if (jacobian != NULL) {
 
-       DenseSparseMatrix* dense_jacobian;
 
-       dense_jacobian = down_cast<DenseSparseMatrix*>(jacobian);
 
-       dense_jacobian->SetZero();
 
-       ColMajorMatrixRef jacobian_matrix = dense_jacobian->mutable_matrix();
 
-       CHECK_EQ(jacobian_matrix.cols(), num_active_cols_);
 
-       int column_index = 0;
 
-       if (col1) {
 
-         jacobian_matrix.col(column_index++) <<
 
-             1.0,
 
-             0.0,
 
-             0.0,
 
-             sqrt(10.0) * 2.0 * (x1 - x4) * (1.0 - x4);
 
-       }
 
-       if (col2) {
 
-         jacobian_matrix.col(column_index++) <<
 
-             10.0,
 
-             0.0,
 
-             2.0*(x2 - 2.0*x3)*(1.0 - 2.0*x3),
 
-             0.0;
 
-       }
 
-       if (col3) {
 
-         jacobian_matrix.col(column_index++) <<
 
-             0.0,
 
-             sqrt(5.0),
 
-             2.0*(x2 - 2.0*x3)*(x2 - 2.0),
 
-             0.0;
 
-       }
 
-       if (col4) {
 
-         jacobian_matrix.col(column_index++) <<
 
-             0.0,
 
-             -sqrt(5.0),
 
-             0.0,
 
-             sqrt(10.0) * 2.0 * (x1 - x4) * (x1 - 1.0);
 
-       }
 
-       VLOG(1) << "\n" << jacobian_matrix;
 
-     }
 
-     if (gradient != NULL) {
 
-       int column_index = 0;
 
-       if (col1) {
 
-         gradient[column_index++] = f1  + f4 * sqrt(10.0) * 2.0 * (x1 - x4);
 
-       }
 
-       if (col2) {
 
-         gradient[column_index++] = f1 * 10.0 + f3 * 2.0 * (x2 - 2.0 * x3);
 
-       }
 
-       if (col3) {
 
-         gradient[column_index++] =
 
-             f2 * sqrt(5.0) + f3 * (2.0 * 2.0 * (2.0 * x3 - x2));
 
-       }
 
-       if (col4) {
 
-         gradient[column_index++] =
 
-             -f2 * sqrt(5.0) + f4 * sqrt(10.0) * 2.0 * (x4 - x1);
 
-       }
 
-     }
 
-     return true;
 
-   }
 
-   bool Plus(const double* state,
 
-             const double* delta,
 
-             double* state_plus_delta) const final {
 
-     int delta_index = 0;
 
-     state_plus_delta[0] = (col1  ? state[0] + delta[delta_index++] : state[0]);
 
-     state_plus_delta[1] = (col2  ? state[1] + delta[delta_index++] : state[1]);
 
-     state_plus_delta[2] = (col3  ? state[2] + delta[delta_index++] : state[2]);
 
-     state_plus_delta[3] = (col4  ? state[3] + delta[delta_index++] : state[3]);
 
-     return true;
 
-   }
 
-   int NumEffectiveParameters() const final { return num_active_cols_; }
 
-   int NumParameters()          const final { return 4; }
 
-   int NumResiduals()           const final { return 4; }
 
-  private:
 
-   const int num_active_cols_;
 
- };
 
- // Templated function to hold a subset of the columns fixed and check
 
- // if the solver converges to the optimal values or not.
 
- template<bool col1, bool col2, bool col3, bool col4>
 
- void IsTrustRegionSolveSuccessful(TrustRegionStrategyType strategy_type) {
 
-   Solver::Options solver_options;
 
-   LinearSolver::Options linear_solver_options;
 
-   DenseQRSolver linear_solver(linear_solver_options);
 
-   double parameters[4] = { 3, -1, 0, 1.0 };
 
-   // If the column is inactive, then set its value to the optimal
 
-   // value.
 
-   parameters[0] = (col1 ? parameters[0] : 0.0);
 
-   parameters[1] = (col2 ? parameters[1] : 0.0);
 
-   parameters[2] = (col3 ? parameters[2] : 0.0);
 
-   parameters[3] = (col4 ? parameters[3] : 0.0);
 
-   Minimizer::Options minimizer_options(solver_options);
 
-   minimizer_options.gradient_tolerance = 1e-26;
 
-   minimizer_options.function_tolerance = 1e-26;
 
-   minimizer_options.parameter_tolerance = 1e-26;
 
-   minimizer_options.evaluator.reset(
 
-       new PowellEvaluator2<col1, col2, col3, col4>);
 
-   minimizer_options.jacobian.reset(
 
-       minimizer_options.evaluator->CreateJacobian());
 
-   TrustRegionStrategy::Options trust_region_strategy_options;
 
-   trust_region_strategy_options.trust_region_strategy_type = strategy_type;
 
-   trust_region_strategy_options.linear_solver = &linear_solver;
 
-   trust_region_strategy_options.initial_radius = 1e4;
 
-   trust_region_strategy_options.max_radius = 1e20;
 
-   trust_region_strategy_options.min_lm_diagonal = 1e-6;
 
-   trust_region_strategy_options.max_lm_diagonal = 1e32;
 
-   minimizer_options.trust_region_strategy.reset(
 
-       TrustRegionStrategy::Create(trust_region_strategy_options));
 
-   TrustRegionMinimizer minimizer;
 
-   Solver::Summary summary;
 
-   minimizer.Minimize(minimizer_options, parameters, &summary);
 
-   // The minimum is at x1 = x2 = x3 = x4 = 0.
 
-   EXPECT_NEAR(0.0, parameters[0], 0.001);
 
-   EXPECT_NEAR(0.0, parameters[1], 0.001);
 
-   EXPECT_NEAR(0.0, parameters[2], 0.001);
 
-   EXPECT_NEAR(0.0, parameters[3], 0.001);
 
- }
 
- TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingLevenbergMarquardt) {
 
-   // This case is excluded because this has a local minimum and does
 
-   // not find the optimum. This should not affect the correctness of
 
-   // this test since we are testing all the other 14 combinations of
 
-   // column activations.
 
-   //
 
-   //   IsSolveSuccessful<true, true, false, true>();
 
-   const TrustRegionStrategyType kStrategy = LEVENBERG_MARQUARDT;
 
-   IsTrustRegionSolveSuccessful<true,  true,  true,  true >(kStrategy);
 
-   IsTrustRegionSolveSuccessful<true,  true,  true,  false>(kStrategy);
 
-   IsTrustRegionSolveSuccessful<true,  false, true,  true >(kStrategy);
 
-   IsTrustRegionSolveSuccessful<false, true,  true,  true >(kStrategy);
 
-   IsTrustRegionSolveSuccessful<true,  true,  false, false>(kStrategy);
 
-   IsTrustRegionSolveSuccessful<true,  false, true,  false>(kStrategy);
 
-   IsTrustRegionSolveSuccessful<false, true,  true,  false>(kStrategy);
 
-   IsTrustRegionSolveSuccessful<true,  false, false, true >(kStrategy);
 
-   IsTrustRegionSolveSuccessful<false, true,  false, true >(kStrategy);
 
-   IsTrustRegionSolveSuccessful<false, false, true,  true >(kStrategy);
 
-   IsTrustRegionSolveSuccessful<true,  false, false, false>(kStrategy);
 
-   IsTrustRegionSolveSuccessful<false, true,  false, false>(kStrategy);
 
-   IsTrustRegionSolveSuccessful<false, false, true,  false>(kStrategy);
 
-   IsTrustRegionSolveSuccessful<false, false, false, true >(kStrategy);
 
- }
 
- TEST(TrustRegionMinimizer, PowellsSingularFunctionUsingDogleg) {
 
-   // The following two cases are excluded because they encounter a
 
-   // local minimum.
 
-   //
 
-   //  IsTrustRegionSolveSuccessful<true, true, false, true >(kStrategy);
 
-   //  IsTrustRegionSolveSuccessful<true,  true,  true,  true >(kStrategy);
 
-   const TrustRegionStrategyType kStrategy = DOGLEG;
 
-   IsTrustRegionSolveSuccessful<true,  true,  true,  false>(kStrategy);
 
-   IsTrustRegionSolveSuccessful<true,  false, true,  true >(kStrategy);
 
-   IsTrustRegionSolveSuccessful<false, true,  true,  true >(kStrategy);
 
-   IsTrustRegionSolveSuccessful<true,  true,  false, false>(kStrategy);
 
-   IsTrustRegionSolveSuccessful<true,  false, true,  false>(kStrategy);
 
-   IsTrustRegionSolveSuccessful<false, true,  true,  false>(kStrategy);
 
-   IsTrustRegionSolveSuccessful<true,  false, false, true >(kStrategy);
 
-   IsTrustRegionSolveSuccessful<false, true,  false, true >(kStrategy);
 
-   IsTrustRegionSolveSuccessful<false, false, true,  true >(kStrategy);
 
-   IsTrustRegionSolveSuccessful<true,  false, false, false>(kStrategy);
 
-   IsTrustRegionSolveSuccessful<false, true,  false, false>(kStrategy);
 
-   IsTrustRegionSolveSuccessful<false, false, true,  false>(kStrategy);
 
-   IsTrustRegionSolveSuccessful<false, false, false, true >(kStrategy);
 
- }
 
- class CurveCostFunction : public CostFunction {
 
-  public:
 
-   CurveCostFunction(int num_vertices, double target_length)
 
-       : num_vertices_(num_vertices), target_length_(target_length) {
 
-     set_num_residuals(1);
 
-     for (int i = 0; i < num_vertices_; ++i) {
 
-       mutable_parameter_block_sizes()->push_back(2);
 
-     }
 
-   }
 
-   bool Evaluate(double const* const* parameters,
 
-                 double* residuals,
 
-                 double** jacobians) const {
 
-     residuals[0] = target_length_;
 
-     for (int i = 0; i < num_vertices_; ++i) {
 
-       int prev = (num_vertices_ + i - 1) % num_vertices_;
 
-       double length = 0.0;
 
-       for (int dim = 0; dim < 2; dim++) {
 
-         const double diff = parameters[prev][dim] - parameters[i][dim];
 
-         length += diff * diff;
 
-       }
 
-       residuals[0] -= sqrt(length);
 
-     }
 
-     if (jacobians == NULL) {
 
-       return true;
 
-     }
 
-     for (int i = 0; i < num_vertices_; ++i) {
 
-       if (jacobians[i] != NULL) {
 
-         int prev = (num_vertices_ + i - 1) % num_vertices_;
 
-         int next = (i + 1) % num_vertices_;
 
-         double u[2], v[2];
 
-         double norm_u = 0., norm_v = 0.;
 
-         for (int dim = 0; dim < 2; dim++) {
 
-           u[dim] = parameters[i][dim] - parameters[prev][dim];
 
-           norm_u += u[dim] * u[dim];
 
-           v[dim] = parameters[next][dim] - parameters[i][dim];
 
-           norm_v += v[dim] * v[dim];
 
-         }
 
-         norm_u = sqrt(norm_u);
 
-         norm_v = sqrt(norm_v);
 
-         for (int dim = 0; dim < 2; dim++) {
 
-           jacobians[i][dim] = 0.;
 
-           if (norm_u > std::numeric_limits< double >::min()) {
 
-             jacobians[i][dim] -= u[dim] / norm_u;
 
-           }
 
-           if (norm_v > std::numeric_limits< double >::min()) {
 
-             jacobians[i][dim] += v[dim] / norm_v;
 
-           }
 
-         }
 
-       }
 
-     }
 
-     return true;
 
-   }
 
-  private:
 
-   int     num_vertices_;
 
-   double  target_length_;
 
- };
 
- TEST(TrustRegionMinimizer, JacobiScalingTest) {
 
-   int N = 6;
 
-   std::vector<double*> y(N);
 
-   const double pi = 3.1415926535897932384626433;
 
-   for (int i = 0; i < N; i++) {
 
-     double theta = i * 2. * pi/ static_cast< double >(N);
 
-     y[i] = new double[2];
 
-     y[i][0] = cos(theta);
 
-     y[i][1] = sin(theta);
 
-   }
 
-   Problem problem;
 
-   problem.AddResidualBlock(new CurveCostFunction(N, 10.), NULL, y);
 
-   Solver::Options options;
 
-   options.linear_solver_type = ceres::DENSE_QR;
 
-   Solver::Summary summary;
 
-   Solve(options, &problem, &summary);
 
-   EXPECT_LE(summary.final_cost, 1e-10);
 
-   for (int i = 0; i < N; i++) {
 
-     delete []y[i];
 
-   }
 
- }
 
- struct ExpCostFunctor {
 
-   template <typename T>
 
-   bool operator()(const T* const x, T* residual) const {
 
-     residual[0] = T(10.0) - exp(x[0]);
 
-     return true;
 
-   }
 
-   static CostFunction* Create() {
 
-     return new AutoDiffCostFunction<ExpCostFunctor, 1, 1>(
 
-         new ExpCostFunctor);
 
-   }
 
- };
 
- TEST(TrustRegionMinimizer, GradientToleranceConvergenceUpdatesStep) {
 
-   double x = 5;
 
-   Problem problem;
 
-   problem.AddResidualBlock(ExpCostFunctor::Create(), NULL, &x);
 
-   problem.SetParameterLowerBound(&x, 0, 3.0);
 
-   Solver::Options options;
 
-   Solver::Summary summary;
 
-   Solve(options, &problem, &summary);
 
-   EXPECT_NEAR(3.0, x, 1e-12);
 
-   const double expected_final_cost = 0.5 * pow(10.0 - exp(3.0), 2);
 
-   EXPECT_NEAR(expected_final_cost, summary.final_cost, 1e-12);
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |