| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2019 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#ifndef CERES_INTERNAL_SCHUR_ELIMINATOR_H_#define CERES_INTERNAL_SCHUR_ELIMINATOR_H_#include <map>#include <memory>#include <mutex>#include <vector>#include "Eigen/Dense"#include "ceres/block_random_access_matrix.h"#include "ceres/block_sparse_matrix.h"#include "ceres/block_structure.h"#include "ceres/internal/eigen.h"#include "ceres/internal/port.h"#include "ceres/linear_solver.h"namespace ceres {namespace internal {// Classes implementing the SchurEliminatorBase interface implement// variable elimination for linear least squares problems. Assuming// that the input linear system Ax = b can be partitioned into////  E y + F z = b//// Where x = [y;z] is a partition of the variables.  The partitioning// of the variables is such that, E'E is a block diagonal matrix. Or// in other words, the parameter blocks in E form an independent set// of the of the graph implied by the block matrix A'A. Then, this// class provides the functionality to compute the Schur complement// system////   S z = r//// where////   S = F'F - F'E (E'E)^{-1} E'F and r = F'b - F'E(E'E)^(-1) E'b//// This is the Eliminate operation, i.e., construct the linear system// obtained by eliminating the variables in E.//// The eliminator also provides the reverse functionality, i.e. given// values for z it can back substitute for the values of y, by solving the// linear system////  Ey = b - F z//// which is done by observing that////  y = (E'E)^(-1) [E'b - E'F z]//// The eliminator has a number of requirements.//// The rows of A are ordered so that for every variable block in y,// all the rows containing that variable block occur as a vertically// contiguous block. i.e the matrix A looks like////              E                 F                   chunk//  A = [ y1   0   0   0 |  z1    0    0   0    z5]     1//      [ y1   0   0   0 |  z1   z2    0   0     0]     1//      [  0  y2   0   0 |   0    0   z3   0     0]     2//      [  0   0  y3   0 |  z1   z2   z3  z4    z5]     3//      [  0   0  y3   0 |  z1    0    0   0    z5]     3//      [  0   0   0  y4 |   0    0    0   0    z5]     4//      [  0   0   0  y4 |   0   z2    0   0     0]     4//      [  0   0   0  y4 |   0    0    0   0     0]     4//      [  0   0   0   0 |  z1    0    0   0     0] non chunk blocks//      [  0   0   0   0 |   0    0   z3  z4    z5] non chunk blocks//// This structure should be reflected in the corresponding// CompressedRowBlockStructure object associated with A. The linear// system Ax = b should either be well posed or the array D below// should be non-null and the diagonal matrix corresponding to it// should be non-singular. For simplicity of exposition only the case// with a null D is described.//// The usual way to do the elimination is as follows. Starting with////  E y + F z = b//// we can form the normal equations,////  E'E y + E'F z = E'b//  F'E y + F'F z = F'b//// multiplying both sides of the first equation by (E'E)^(-1) and then// by F'E we get////  F'E y + F'E (E'E)^(-1) E'F z =  F'E (E'E)^(-1) E'b//  F'E y +                F'F z =  F'b//// now subtracting the two equations we get//// [FF' - F'E (E'E)^(-1) E'F] z = F'b - F'E(E'E)^(-1) E'b//// Instead of forming the normal equations and operating on them as// general sparse matrices, the algorithm here deals with one// parameter block in y at a time. The rows corresponding to a single// parameter block yi are known as a chunk, and the algorithm operates// on one chunk at a time. The mathematics remains the same since the// reduced linear system can be shown to be the sum of the reduced// linear systems for each chunk. This can be seen by observing two// things.////  1. E'E is a block diagonal matrix.////  2. When E'F is computed, only the terms within a single chunk//  interact, i.e for y1 column blocks when transposed and multiplied//  with F, the only non-zero contribution comes from the blocks in//  chunk1.//// Thus, the reduced linear system////  FF' - F'E (E'E)^(-1) E'F//// can be re-written as////  sum_k F_k F_k' - F_k'E_k (E_k'E_k)^(-1) E_k' F_k//// Where the sum is over chunks and E_k'E_k is dense matrix of size y1// x y1.//// Advanced usage. Until now it has been assumed that the user would// be interested in all of the Schur Complement S. However, it is also// possible to use this eliminator to obtain an arbitrary submatrix of// the full Schur complement. When the eliminator is generating the// blocks of S, it asks the RandomAccessBlockMatrix instance passed to// it if it has storage for that block. If it does, the eliminator// computes/updates it, if not it is skipped. This is useful when one// is interested in constructing a preconditioner based on the Schur// Complement, e.g., computing the block diagonal of S so that it can// be used as a preconditioner for an Iterative Substructuring based// solver [See Agarwal et al, Bundle Adjustment in the Large, ECCV// 2008 for an example of such use].//// Example usage: Please see schur_complement_solver.ccclass SchurEliminatorBase { public:  virtual ~SchurEliminatorBase() {}  // Initialize the eliminator. It is the user's responsibilty to call  // this function before calling Eliminate or BackSubstitute. It is  // also the caller's responsibilty to ensure that the  // CompressedRowBlockStructure object passed to this method is the  // same one (or is equivalent to) the one associated with the  // BlockSparseMatrix objects below.  //  // assume_full_rank_ete controls how the eliminator inverts with the  // diagonal blocks corresponding to e blocks in A'A. If  // assume_full_rank_ete is true, then a Cholesky factorization is  // used to compute the inverse, otherwise a singular value  // decomposition is used to compute the pseudo inverse.  virtual void Init(int num_eliminate_blocks,                    bool assume_full_rank_ete,                    const CompressedRowBlockStructure* bs) = 0;  // Compute the Schur complement system from the augmented linear  // least squares problem [A;D] x = [b;0]. The left hand side and the  // right hand side of the reduced linear system are returned in lhs  // and rhs respectively.  //  // It is the caller's responsibility to construct and initialize  // lhs. Depending upon the structure of the lhs object passed here,  // the full or a submatrix of the Schur complement will be computed.  //  // Since the Schur complement is a symmetric matrix, only the upper  // triangular part of the Schur complement is computed.  virtual void Eliminate(const BlockSparseMatrixData& A,                         const double* b,                         const double* D,                         BlockRandomAccessMatrix* lhs,                         double* rhs) = 0;  // Given values for the variables z in the F block of A, solve for  // the optimal values of the variables y corresponding to the E  // block in A.  virtual void BackSubstitute(const BlockSparseMatrixData& A,                              const double* b,                              const double* D,                              const double* z,                              double* y) = 0;  // Factory  static SchurEliminatorBase* Create(const LinearSolver::Options& options);};// Templated implementation of the SchurEliminatorBase interface. The// templating is on the sizes of the row, e and f blocks sizes in the// input matrix. In many problems, the sizes of one or more of these// blocks are constant, in that case, its worth passing these// parameters as template arguments so that they are visible to the// compiler and can be used for compile time optimization of the low// level linear algebra routines.template <int kRowBlockSize = Eigen::Dynamic,          int kEBlockSize = Eigen::Dynamic,          int kFBlockSize = Eigen::Dynamic>class SchurEliminator : public SchurEliminatorBase { public:  explicit SchurEliminator(const LinearSolver::Options& options)      : num_threads_(options.num_threads), context_(options.context) {    CHECK(context_ != nullptr);  }  // SchurEliminatorBase Interface  virtual ~SchurEliminator();  void Init(int num_eliminate_blocks,            bool assume_full_rank_ete,            const CompressedRowBlockStructure* bs) final;  void Eliminate(const BlockSparseMatrixData& A,                 const double* b,                 const double* D,                 BlockRandomAccessMatrix* lhs,                 double* rhs) final;  void BackSubstitute(const BlockSparseMatrixData& A,                      const double* b,                      const double* D,                      const double* z,                      double* y) final; private:  // Chunk objects store combinatorial information needed to  // efficiently eliminate a whole chunk out of the least squares  // problem. Consider the first chunk in the example matrix above.  //  //      [ y1   0   0   0 |  z1    0    0   0    z5]  //      [ y1   0   0   0 |  z1   z2    0   0     0]  //  // One of the intermediate quantities that needs to be calculated is  // for each row the product of the y block transposed with the  // non-zero z block, and the sum of these blocks across rows. A  // temporary array "buffer_" is used for computing and storing them  // and the buffer_layout maps the indices of the z-blocks to  // position in the buffer_ array.  The size of the chunk is the  // number of row blocks/residual blocks for the particular y block  // being considered.  //  // For the example chunk shown above,  //  // size = 2  //  // The entries of buffer_layout will be filled in the following order.  //  // buffer_layout[z1] = 0  // buffer_layout[z5] = y1 * z1  // buffer_layout[z2] = y1 * z1 + y1 * z5  typedef std::map<int, int> BufferLayoutType;  struct Chunk {    Chunk() : size(0) {}    int size;    int start;    BufferLayoutType buffer_layout;  };  void ChunkDiagonalBlockAndGradient(      const Chunk& chunk,      const BlockSparseMatrixData& A,      const double* b,      int row_block_counter,      typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix* eet,      double* g,      double* buffer,      BlockRandomAccessMatrix* lhs);  void UpdateRhs(const Chunk& chunk,                 const BlockSparseMatrixData& A,                 const double* b,                 int row_block_counter,                 const double* inverse_ete_g,                 double* rhs);  void ChunkOuterProduct(int thread_id,                         const CompressedRowBlockStructure* bs,                         const Matrix& inverse_eet,                         const double* buffer,                         const BufferLayoutType& buffer_layout,                         BlockRandomAccessMatrix* lhs);  void EBlockRowOuterProduct(const BlockSparseMatrixData& A,                             int row_block_index,                             BlockRandomAccessMatrix* lhs);  void NoEBlockRowsUpdate(const BlockSparseMatrixData& A,                          const double* b,                          int row_block_counter,                          BlockRandomAccessMatrix* lhs,                          double* rhs);  void NoEBlockRowOuterProduct(const BlockSparseMatrixData& A,                               int row_block_index,                               BlockRandomAccessMatrix* lhs);  int num_threads_;  ContextImpl* context_;  int num_eliminate_blocks_;  bool assume_full_rank_ete_;  // Block layout of the columns of the reduced linear system. Since  // the f blocks can be of varying size, this vector stores the  // position of each f block in the row/col of the reduced linear  // system. Thus lhs_row_layout_[i] is the row/col position of the  // i^th f block.  std::vector<int> lhs_row_layout_;  // Combinatorial structure of the chunks in A. For more information  // see the documentation of the Chunk object above.  std::vector<Chunk> chunks_;  // TODO(sameeragarwal): The following two arrays contain per-thread  // storage. They should be refactored into a per thread struct.  // Buffer to store the products of the y and z blocks generated  // during the elimination phase. buffer_ is of size num_threads *  // buffer_size_. Each thread accesses the chunk  //  //   [thread_id * buffer_size_ , (thread_id + 1) * buffer_size_]  //  std::unique_ptr<double[]> buffer_;  // Buffer to store per thread matrix matrix products used by  // ChunkOuterProduct. Like buffer_ it is of size num_threads *  // buffer_size_. Each thread accesses the chunk  //  //   [thread_id * buffer_size_ , (thread_id + 1) * buffer_size_ -1]  //  std::unique_ptr<double[]> chunk_outer_product_buffer_;  int buffer_size_;  int uneliminated_row_begins_;  // Locks for the blocks in the right hand side of the reduced linear  // system.  std::vector<std::mutex*> rhs_locks_;};// SchurEliminatorForOneFBlock specializes the SchurEliminatorBase interface for// the case where there is exactly one f-block and all three parameters// kRowBlockSize, kEBlockSize and KFBlockSize are known at compile time. This is// the case for some two view bundle adjustment problems which have very// stringent latency requirements.//// Under these assumptions, we can simplify the more general algorithm// implemented by SchurEliminatorImpl significantly. Two of the major// contributors to the increased performance are://// 1. Simpler loop structure and less use of dynamic memory. Almost everything//    is on the stack and benefits from aligned memory as well as fixed sized//    vectorization. We are also able to reason about temporaries and control//    their lifetimes better.// 2. Use of inverse() over llt().solve(Identity).template <int kRowBlockSize = Eigen::Dynamic,          int kEBlockSize = Eigen::Dynamic,          int kFBlockSize = Eigen::Dynamic>class SchurEliminatorForOneFBlock : public SchurEliminatorBase { public:  virtual ~SchurEliminatorForOneFBlock() {}  void Init(int num_eliminate_blocks,            bool assume_full_rank_ete,            const CompressedRowBlockStructure* bs) override {    CHECK_GT(num_eliminate_blocks, 0)        << "SchurComplementSolver cannot be initialized with "        << "num_eliminate_blocks = 0.";    CHECK_EQ(bs->cols.size() - num_eliminate_blocks, 1);    num_eliminate_blocks_ = num_eliminate_blocks;    const int num_row_blocks = bs->rows.size();    chunks_.clear();    int r = 0;    // Iterate over the row blocks of A, and detect the chunks. The    // matrix should already have been ordered so that all rows    // containing the same y block are vertically contiguous.    while (r < num_row_blocks) {      const int e_block_id = bs->rows[r].cells.front().block_id;      if (e_block_id >= num_eliminate_blocks_) {        break;      }      chunks_.push_back(Chunk());      Chunk& chunk = chunks_.back();      chunk.num_rows = 0;      chunk.start = r;      // Add to the chunk until the first block in the row is      // different than the one in the first row for the chunk.      while (r + chunk.num_rows < num_row_blocks) {        const CompressedRow& row = bs->rows[r + chunk.num_rows];        if (row.cells.front().block_id != e_block_id) {          break;        }        ++chunk.num_rows;      }      r += chunk.num_rows;    }    const Chunk& last_chunk = chunks_.back();    uneliminated_row_begins_ = last_chunk.start + last_chunk.num_rows;    e_t_e_inverse_matrices_.resize(kEBlockSize * kEBlockSize * chunks_.size());    std::fill(        e_t_e_inverse_matrices_.begin(), e_t_e_inverse_matrices_.end(), 0.0);  }  void Eliminate(const BlockSparseMatrixData& A,                 const double* b,                 const double* D,                 BlockRandomAccessMatrix* lhs_bram,                 double* rhs_ptr) override {    // Since there is only one f-block, we can call GetCell once, and cache its    // output.    int r, c, row_stride, col_stride;    CellInfo* cell_info =        lhs_bram->GetCell(0, 0, &r, &c, &row_stride, &col_stride);    typename EigenTypes<kFBlockSize, kFBlockSize>::MatrixRef lhs(        cell_info->values, kFBlockSize, kFBlockSize);    typename EigenTypes<kFBlockSize>::VectorRef rhs(rhs_ptr, kFBlockSize);    lhs.setZero();    rhs.setZero();    const CompressedRowBlockStructure* bs = A.block_structure();    const double* values = A.values();    // Add the diagonal to the schur complement.    if (D != nullptr) {      typename EigenTypes<kFBlockSize>::ConstVectorRef diag(          D + bs->cols[num_eliminate_blocks_].position, kFBlockSize);      lhs.diagonal() = diag.array().square().matrix();    }    Eigen::Matrix<double, kEBlockSize, kFBlockSize> tmp;    Eigen::Matrix<double, kEBlockSize, 1> tmp2;    // The following loop works on a block matrix which looks as follows    // (number of rows can be anything):    //    // [e_1 | f_1] = [b1]    // [e_2 | f_2] = [b2]    // [e_3 | f_3] = [b3]    // [e_4 | f_4] = [b4]    //    // and computes the following    //    // e_t_e = sum_i e_i^T * e_i    // e_t_e_inverse = inverse(e_t_e)    // e_t_f = sum_i e_i^T f_i    // e_t_b = sum_i e_i^T b_i    // f_t_b = sum_i f_i^T b_i    //    // lhs += sum_i f_i^T * f_i - e_t_f^T * e_t_e_inverse * e_t_f    // rhs += f_t_b - e_t_f^T * e_t_e_inverse * e_t_b    for (int i = 0; i < chunks_.size(); ++i) {      const Chunk& chunk = chunks_[i];      const int e_block_id = bs->rows[chunk.start].cells.front().block_id;      // Naming covention, e_t_e = e_block.transpose() * e_block;      Eigen::Matrix<double, kEBlockSize, kEBlockSize> e_t_e;      Eigen::Matrix<double, kEBlockSize, kFBlockSize> e_t_f;      Eigen::Matrix<double, kEBlockSize, 1> e_t_b;      Eigen::Matrix<double, kFBlockSize, 1> f_t_b;      // Add the square of the diagonal to e_t_e.      if (D != NULL) {        const typename EigenTypes<kEBlockSize>::ConstVectorRef diag(            D + bs->cols[e_block_id].position, kEBlockSize);        e_t_e = diag.array().square().matrix().asDiagonal();      } else {        e_t_e.setZero();      }      e_t_f.setZero();      e_t_b.setZero();      f_t_b.setZero();      for (int j = 0; j < chunk.num_rows; ++j) {        const int row_id = chunk.start + j;        const auto& row = bs->rows[row_id];        const typename EigenTypes<kRowBlockSize, kEBlockSize>::ConstMatrixRef            e_block(values + row.cells[0].position, kRowBlockSize, kEBlockSize);        const typename EigenTypes<kRowBlockSize>::ConstVectorRef b_block(            b + row.block.position, kRowBlockSize);        e_t_e.noalias() += e_block.transpose() * e_block;        e_t_b.noalias() += e_block.transpose() * b_block;        if (row.cells.size() == 1) {          // There is no f block, so there is nothing more to do.          continue;        }        const typename EigenTypes<kRowBlockSize, kFBlockSize>::ConstMatrixRef            f_block(values + row.cells[1].position, kRowBlockSize, kFBlockSize);        e_t_f.noalias() += e_block.transpose() * f_block;        lhs.noalias() += f_block.transpose() * f_block;        f_t_b.noalias() += f_block.transpose() * b_block;      }      // BackSubstitute computes the same inverse, and this is the key workload      // there, so caching these inverses makes BackSubstitute essentially free.      typename EigenTypes<kEBlockSize, kEBlockSize>::MatrixRef e_t_e_inverse(          &e_t_e_inverse_matrices_[kEBlockSize * kEBlockSize * i],          kEBlockSize,          kEBlockSize);      // e_t_e is a symmetric positive definite matrix, so the standard way to      // compute its inverse is via the Cholesky factorization by calling      // e_t_e.llt().solve(Identity()). However, the inverse() method even      // though it is not optimized for symmetric matrices is significantly      // faster for small fixed size (up to 4x4) matrices.      //      // https://eigen.tuxfamily.org/dox/group__TutorialLinearAlgebra.html#title3      e_t_e_inverse.noalias() = e_t_e.inverse();      // The use of these two pre-allocated tmp vectors saves temporaries in the      // expressions for lhs and rhs updates below and has a significant impact      // on the performance of this method.      tmp.noalias() = e_t_e_inverse * e_t_f;      tmp2.noalias() = e_t_e_inverse * e_t_b;      lhs.noalias() -= e_t_f.transpose() * tmp;      rhs.noalias() += f_t_b - e_t_f.transpose() * tmp2;    }    // The rows without any e-blocks can have arbitrary size but only contain    // the f-block.    //    // lhs += f_i^T f_i    // rhs += f_i^T b_i    for (int row_id = uneliminated_row_begins_; row_id < bs->rows.size();         ++row_id) {      const auto& row = bs->rows[row_id];      const auto& cell = row.cells[0];      const typename EigenTypes<Eigen::Dynamic, kFBlockSize>::ConstMatrixRef          f_block(values + cell.position, row.block.size, kFBlockSize);      const typename EigenTypes<Eigen::Dynamic>::ConstVectorRef b_block(          b + row.block.position, row.block.size);      lhs.noalias() += f_block.transpose() * f_block;      rhs.noalias() += f_block.transpose() * b_block;    }  }  // This implementation of BackSubstitute depends on Eliminate being called  // before this. SchurComplementSolver always does this.  //  // y_i = e_t_e_inverse * sum_i e_i^T * (b_i - f_i * z);  void BackSubstitute(const BlockSparseMatrixData& A,                      const double* b,                      const double* D,                      const double* z_ptr,                      double* y) override {    typename EigenTypes<kFBlockSize>::ConstVectorRef z(z_ptr, kFBlockSize);    const CompressedRowBlockStructure* bs = A.block_structure();    const double* values = A.values();    Eigen::Matrix<double, kEBlockSize, 1> tmp;    for (int i = 0; i < chunks_.size(); ++i) {      const Chunk& chunk = chunks_[i];      const int e_block_id = bs->rows[chunk.start].cells.front().block_id;      tmp.setZero();      for (int j = 0; j < chunk.num_rows; ++j) {        const int row_id = chunk.start + j;        const auto& row = bs->rows[row_id];        const typename EigenTypes<kRowBlockSize, kEBlockSize>::ConstMatrixRef            e_block(values + row.cells[0].position, kRowBlockSize, kEBlockSize);        const typename EigenTypes<kRowBlockSize>::ConstVectorRef b_block(            b + row.block.position, kRowBlockSize);        if (row.cells.size() == 1) {          // There is no f block.          tmp += e_block.transpose() * b_block;        } else {          typename EigenTypes<kRowBlockSize, kFBlockSize>::ConstMatrixRef              f_block(                  values + row.cells[1].position, kRowBlockSize, kFBlockSize);          tmp += e_block.transpose() * (b_block - f_block * z);        }      }      typename EigenTypes<kEBlockSize, kEBlockSize>::MatrixRef e_t_e_inverse(          &e_t_e_inverse_matrices_[kEBlockSize * kEBlockSize * i],          kEBlockSize,          kEBlockSize);      typename EigenTypes<kEBlockSize>::VectorRef y_block(          y + bs->cols[e_block_id].position, kEBlockSize);      y_block.noalias() = e_t_e_inverse * tmp;    }  } private:  struct Chunk {    int start = 0;    int num_rows = 0;  };  std::vector<Chunk> chunks_;  int num_eliminate_blocks_;  int uneliminated_row_begins_;  std::vector<double> e_t_e_inverse_matrices_;};}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_SCHUR_ELIMINATOR_H_
 |