| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/line_search_direction.h"#include "ceres/line_search_minimizer.h"#include "ceres/low_rank_inverse_hessian.h"#include "ceres/internal/eigen.h"#include "glog/logging.h"namespace ceres {namespace internal {class SteepestDescent : public LineSearchDirection { public:  virtual ~SteepestDescent() {}  bool NextDirection(const LineSearchMinimizer::State& previous,                     const LineSearchMinimizer::State& current,                     Vector* search_direction) {    *search_direction = -current.gradient;    return true;  }};class NonlinearConjugateGradient : public LineSearchDirection { public:  NonlinearConjugateGradient(const NonlinearConjugateGradientType type,                             const double function_tolerance)      : type_(type),        function_tolerance_(function_tolerance) {  }  bool NextDirection(const LineSearchMinimizer::State& previous,                     const LineSearchMinimizer::State& current,                     Vector* search_direction) {    double beta = 0.0;    Vector gradient_change;    switch (type_) {      case FLETCHER_REEVES:        beta = current.gradient_squared_norm / previous.gradient_squared_norm;        break;      case POLAK_RIBIERE:        gradient_change = current.gradient - previous.gradient;        beta = (current.gradient.dot(gradient_change) /                previous.gradient_squared_norm);        break;      case HESTENES_STIEFEL:        gradient_change = current.gradient - previous.gradient;        beta =  (current.gradient.dot(gradient_change) /                 previous.search_direction.dot(gradient_change));        break;      default:        LOG(FATAL) << "Unknown nonlinear conjugate gradient type: " << type_;    }    *search_direction =  -current.gradient + beta * previous.search_direction;    const double directional_derivative =        current.gradient.dot(*search_direction);    if (directional_derivative > -function_tolerance_) {      LOG(WARNING) << "Restarting non-linear conjugate gradients: "                   << directional_derivative;      *search_direction = -current.gradient;    }    return true;  } private:  const NonlinearConjugateGradientType type_;  const double function_tolerance_;};class LBFGS : public LineSearchDirection { public:  LBFGS(const int num_parameters,        const int max_lbfgs_rank,        const bool use_approximate_eigenvalue_bfgs_scaling)      : low_rank_inverse_hessian_(num_parameters,                                  max_lbfgs_rank,                                  use_approximate_eigenvalue_bfgs_scaling),        is_positive_definite_(true) {}  virtual ~LBFGS() {}  bool NextDirection(const LineSearchMinimizer::State& previous,                     const LineSearchMinimizer::State& current,                     Vector* search_direction) {    CHECK(is_positive_definite_)        << "Ceres bug: NextDirection() called on L-BFGS after inverse Hessian "        << "approximation has become indefinite, please contact the "        << "developers!";    low_rank_inverse_hessian_.Update(        previous.search_direction * previous.step_size,        current.gradient - previous.gradient);    search_direction->setZero();    low_rank_inverse_hessian_.RightMultiply(current.gradient.data(),                                            search_direction->data());    *search_direction *= -1.0;    if (search_direction->dot(current.gradient) >= 0.0) {      LOG(WARNING) << "Numerical failure in L-BFGS update: inverse Hessian "                   << "approximation is not positive definite, and thus "                   << "initial gradient for search direction is positive: "                   << search_direction->dot(current.gradient);      is_positive_definite_ = false;      return false;    }    return true;  } private:  LowRankInverseHessian low_rank_inverse_hessian_;  bool is_positive_definite_;};class BFGS : public LineSearchDirection { public:  BFGS(const int num_parameters,       const bool use_approximate_eigenvalue_scaling)      : num_parameters_(num_parameters),        use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling),        initialized_(false),        is_positive_definite_(true) {    LOG_IF(WARNING, num_parameters_ >= 1e3)        << "BFGS line search being created with: " << num_parameters_        << " parameters, this will allocate a dense approximate inverse Hessian"        << " of size: " << num_parameters_ << " x " << num_parameters_        << ", consider using the L-BFGS memory-efficient line search direction "        << "instead.";    // Construct inverse_hessian_ after logging warning about size s.t. if the    // allocation crashes us, the log will highlight what the issue likely was.    inverse_hessian_ = Matrix::Identity(num_parameters, num_parameters);  }  virtual ~BFGS() {}  bool NextDirection(const LineSearchMinimizer::State& previous,                     const LineSearchMinimizer::State& current,                     Vector* search_direction) {    CHECK(is_positive_definite_)        << "Ceres bug: NextDirection() called on BFGS after inverse Hessian "        << "approximation has become indefinite, please contact the "        << "developers!";    const Vector delta_x = previous.search_direction * previous.step_size;    const Vector delta_gradient = current.gradient - previous.gradient;    const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient);    // The (L)BFGS algorithm explicitly requires that the secant equation:    //    //   B_{k+1} * s_k = y_k    //    // Is satisfied at each iteration, where B_{k+1} is the approximated    // Hessian at the k+1-th iteration, s_k = (x_{k+1} - x_{k}) and    // y_k = (grad_{k+1} - grad_{k}). As the approximated Hessian must be    // positive definite, this is equivalent to the condition:    //    //   s_k^T * y_k > 0     [s_k^T * B_{k+1} * s_k = s_k^T * y_k > 0]    //    // This condition would always be satisfied if the function was strictly    // convex, alternatively, it is always satisfied provided that a Wolfe line    // search is used (even if the function is not strictly convex).  See [1]    // (p138) for a proof.    //    // Although Ceres will always use a Wolfe line search when using (L)BFGS,    // practical implementation considerations mean that the line search    // may return a point that satisfies only the Armijo condition, and thus    // could violate the Secant equation.  As such, we will only use a step    // to update the Hessian approximation if:    //    //   s_k^T * y_k > tolerance    //    // It is important that tolerance is very small (and >=0), as otherwise we    // might skip the update too often and fail to capture important curvature    // information in the Hessian.  For example going from 1e-10 -> 1e-14    // improves the NIST benchmark score from 43/54 to 53/54.    //    // [1] Nocedal J, Wright S, Numerical Optimization, 2nd Ed. Springer, 1999.    //    // TODO(alexs.mac): Consider using Damped BFGS update instead of    // skipping update.    const double kBFGSSecantConditionHessianUpdateTolerance = 1e-14;    if (delta_x_dot_delta_gradient <=        kBFGSSecantConditionHessianUpdateTolerance) {      VLOG(2) << "Skipping BFGS Update, delta_x_dot_delta_gradient too "              << "small: " << delta_x_dot_delta_gradient << ", tolerance: "              << kBFGSSecantConditionHessianUpdateTolerance              << " (Secant condition).";    } else {      // Update dense inverse Hessian approximation.      if (!initialized_ && use_approximate_eigenvalue_scaling_) {        // Rescale the initial inverse Hessian approximation (H_0) to be        // iteratively updated so that it is of similar 'size' to the true        // inverse Hessian at the start point.  As shown in [1]:        //        //   \gamma = (delta_gradient_{0}' * delta_x_{0}) /        //            (delta_gradient_{0}' * delta_gradient_{0})        //        // Satisfies:        //        //   (1 / \lambda_m) <= \gamma <= (1 / \lambda_1)        //        // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues        // of the true initial Hessian (not the inverse) respectively. Thus,        // \gamma is an approximate eigenvalue of the true inverse Hessian, and        // choosing: H_0 = I * \gamma will yield a starting point that has a        // similar scale to the true inverse Hessian.  This technique is widely        // reported to often improve convergence, however this is not        // universally true, particularly if there are errors in the initial        // gradients, or if there are significant differences in the sensitivity        // of the problem to the parameters (i.e. the range of the magnitudes of        // the components of the gradient is large).        //        // The original origin of this rescaling trick is somewhat unclear, the        // earliest reference appears to be Oren [1], however it is widely        // discussed without specific attributation in various texts including        // [2] (p143).        //        // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms        //     Part II: Implementation and experiments, Management Science,        //     20(5), 863-874, 1974.        // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999.        const double approximate_eigenvalue_scale =            delta_x_dot_delta_gradient / delta_gradient.dot(delta_gradient);        inverse_hessian_ *= approximate_eigenvalue_scale;        VLOG(4) << "Applying approximate_eigenvalue_scale: "                << approximate_eigenvalue_scale << " to initial inverse "                << "Hessian approximation.";      }      initialized_ = true;      // Efficient O(num_parameters^2) BFGS update [2].      //      // Starting from dense BFGS update detailed in Nocedal [2] p140/177 and      // using: y_k = delta_gradient, s_k = delta_x:      //      //   \rho_k = 1.0 / (s_k' * y_k)      //   V_k = I - \rho_k * y_k * s_k'      //   H_k = (V_k' * H_{k-1} * V_k) + (\rho_k * s_k * s_k')      //      // This update involves matrix, matrix products which naively O(N^3),      // however we can exploit our knowledge that H_k is positive definite      // and thus by defn. symmetric to reduce the cost of the update:      //      // Expanding the update above yields:      //      //   H_k = H_{k-1} +      //         \rho_k * ( (1.0 + \rho_k * y_k' * H_k * y_k) * s_k * s_k' -      //                    (s_k * y_k' * H_k + H_k * y_k * s_k') )      //      // Using: A = (s_k * y_k' * H_k), and the knowledge that H_k = H_k', the      // last term simplifies to (A + A'). Note that although A is not symmetric      // (A + A') is symmetric. For ease of construction we also define      // B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k', which is by defn      // symmetric due to construction from: s_k * s_k'.      //      // Now we can write the BFGS update as:      //      //   H_k = H_{k-1} + \rho_k * (B - (A + A'))      // For efficiency, as H_k is by defn. symmetric, we will only maintain the      // *lower* triangle of H_k (and all intermediary terms).      const double rho_k = 1.0 / delta_x_dot_delta_gradient;      // Calculate: A = s_k * y_k' * H_k      Matrix A = delta_x * (delta_gradient.transpose() *                            inverse_hessian_.selfadjointView<Eigen::Lower>());      // Calculate scalar: (1 + \rho_k * y_k' * H_k * y_k)      const double delta_x_times_delta_x_transpose_scale_factor =          (1.0 + (rho_k * delta_gradient.transpose() *                  inverse_hessian_.selfadjointView<Eigen::Lower>() *                  delta_gradient));      // Calculate: B = (1 + \rho_k * y_k' * H_k * y_k) * s_k * s_k'      Matrix B = Matrix::Zero(num_parameters_, num_parameters_);      B.selfadjointView<Eigen::Lower>().          rankUpdate(delta_x, delta_x_times_delta_x_transpose_scale_factor);      // Finally, update inverse Hessian approximation according to:      // H_k = H_{k-1} + \rho_k * (B - (A + A')).  Note that (A + A') is      // symmetric, even though A is not.      inverse_hessian_.triangularView<Eigen::Lower>() +=          rho_k * (B - A - A.transpose());    }    *search_direction =        inverse_hessian_.selfadjointView<Eigen::Lower>() *        (-1.0 * current.gradient);    if (search_direction->dot(current.gradient) >= 0.0) {      LOG(WARNING) << "Numerical failure in BFGS update: inverse Hessian "                   << "approximation is not positive definite, and thus "                   << "initial gradient for search direction is positive: "                   << search_direction->dot(current.gradient);      is_positive_definite_ = false;      return false;    }    return true;  } private:  const int num_parameters_;  const bool use_approximate_eigenvalue_scaling_;  Matrix inverse_hessian_;  bool initialized_;  bool is_positive_definite_;};LineSearchDirection*LineSearchDirection::Create(const LineSearchDirection::Options& options) {  if (options.type == STEEPEST_DESCENT) {    return new SteepestDescent;  }  if (options.type == NONLINEAR_CONJUGATE_GRADIENT) {    return new NonlinearConjugateGradient(        options.nonlinear_conjugate_gradient_type,        options.function_tolerance);  }  if (options.type == ceres::LBFGS) {    return new ceres::internal::LBFGS(        options.num_parameters,        options.max_lbfgs_rank,        options.use_approximate_eigenvalue_bfgs_scaling);  }  if (options.type == ceres::BFGS) {    return new ceres::internal::BFGS(        options.num_parameters,        options.use_approximate_eigenvalue_bfgs_scaling);  }  LOG(ERROR) << "Unknown line search direction type: " << options.type;  return NULL;}}  // namespace internal}  // namespace ceres
 |