| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2017 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#ifndef CERES_INTERNAL_INNER_PRODUCT_COMPUTER_H_#define CERES_INTERNAL_INNER_PRODUCT_COMPUTER_H_#include <memory>#include <vector>#include "ceres/block_sparse_matrix.h"#include "ceres/compressed_row_sparse_matrix.h"namespace ceres {namespace internal {// This class is used to repeatedly compute the inner product////   result = m' * m//// where the sparsity structure of m remains constant across calls.//// Upon creation, the class computes and caches information needed to// compute v, and then uses it to efficiently compute the product// every time InnerProductComputer::Compute is called.//// See sparse_normal_cholesky_solver.cc for example usage.//// Note that the result matrix is a block upper or lower-triangular// matrix, i.e., it will contain entries in the upper or lower// triangular part of the matrix corresponding to the block that occur// along its diagonal.//// This is not a problem as sparse linear algebra libraries can ignore// these entries with ease and the space used is minimal/linear in the// size of the matrices.class InnerProductComputer { public:  // Factory  //  // m is the input matrix  //  // Since m' * m is a symmetric matrix, we only compute half of the  // matrix and the value of storage_type which must be  // UPPER_TRIANGULAR or LOWER_TRIANGULAR determines which half is  // computed.  //  // The user must ensure that the matrix m is valid for the life time  // of this object.  static InnerProductComputer* Create(      const BlockSparseMatrix& m,      CompressedRowSparseMatrix::StorageType storage_type);  // This factory method allows the user control over range of row  // blocks of m that should be used to compute the inner product.  //  // a = m(start_row_block : end_row_block, :);  // result = a' * a;  static InnerProductComputer* Create(      const BlockSparseMatrix& m,      int start_row_block,      int end_row_block,      CompressedRowSparseMatrix::StorageType storage_type);  // Update result_ to be numerically equal to m' * m.  void Compute();  // Accessors for the result containing the inner product.  //  // Compute must be called before accessing this result for  // the first time.  const CompressedRowSparseMatrix& result() const { return *result_; }  CompressedRowSparseMatrix* mutable_result() const { return result_.get(); } private:  // A ProductTerm is a term in the block inner product of a matrix  // with itself.  struct ProductTerm {    ProductTerm(const int row, const int col, const int index)        : row(row), col(col), index(index) {}    bool operator<(const ProductTerm& right) const {      if (row == right.row) {        if (col == right.col) {          return index < right.index;        }        return col < right.col;      }      return row < right.row;    }    int row;    int col;    int index;  };  InnerProductComputer(const BlockSparseMatrix& m,                       int start_row_block,                       int end_row_block);  void Init(CompressedRowSparseMatrix::StorageType storage_type);  CompressedRowSparseMatrix* CreateResultMatrix(      const CompressedRowSparseMatrix::StorageType storage_type,      int num_nonzeros);  int ComputeNonzeros(const std::vector<ProductTerm>& product_terms,                      std::vector<int>* row_block_nnz);  void ComputeOffsetsAndCreateResultMatrix(      const CompressedRowSparseMatrix::StorageType storage_type,      const std::vector<ProductTerm>& product_terms);  const BlockSparseMatrix& m_;  const int start_row_block_;  const int end_row_block_;  std::unique_ptr<CompressedRowSparseMatrix> result_;  // For each term in the inner product, result_offsets_ contains the  // location in the values array of the result_ matrix where it  // should be stored.  //  // This is the principal look up table that allows this class to  // compute the inner product fast.  std::vector<int> result_offsets_;};}  // namespace internal}  // namespace ceres#endif  // CERES_INTERNAL_INNER_PRODUCT_COMPUTER_H_
 |