| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: moll.markus@arcor.de (Markus Moll)
 
- #include <limits>
 
- #include <memory>
 
- #include "ceres/internal/eigen.h"
 
- #include "ceres/dense_qr_solver.h"
 
- #include "ceres/dogleg_strategy.h"
 
- #include "ceres/linear_solver.h"
 
- #include "ceres/trust_region_strategy.h"
 
- #include "glog/logging.h"
 
- #include "gtest/gtest.h"
 
- namespace ceres {
 
- namespace internal {
 
- namespace {
 
- class Fixture : public testing::Test {
 
-  protected:
 
-   std::unique_ptr<DenseSparseMatrix> jacobian_;
 
-   Vector residual_;
 
-   Vector x_;
 
-   TrustRegionStrategy::Options options_;
 
- };
 
- // A test problem where
 
- //
 
- //   J^T J = Q diag([1 2 4 8 16 32]) Q^T
 
- //
 
- // where Q is a randomly chosen orthonormal basis of R^6.
 
- // The residual is chosen so that the minimum of the quadratic function is
 
- // at (1, 1, 1, 1, 1, 1). It is therefore at a distance of sqrt(6) ~ 2.45
 
- // from the origin.
 
- class DoglegStrategyFixtureEllipse : public Fixture {
 
-  protected:
 
-   void SetUp() final {
 
-     Matrix basis(6, 6);
 
-     // The following lines exceed 80 characters for better readability.
 
-     basis << -0.1046920933796121, -0.7449367449921986, -0.4190744502875876, -0.4480450716142566,  0.2375351607929440, -0.0363053418882862,  // NOLINT
 
-               0.4064975684355914,  0.2681113508511354, -0.7463625494601520, -0.0803264850508117, -0.4463149623021321,  0.0130224954867195,  // NOLINT
 
-              -0.5514387729089798,  0.1026621026168657, -0.5008316122125011,  0.5738122212666414,  0.2974664724007106,  0.1296020877535158,  // NOLINT
 
-               0.5037835370947156,  0.2668479925183712, -0.1051754618492798, -0.0272739396578799,  0.7947481647088278, -0.1776623363955670,  // NOLINT
 
-              -0.4005458426625444,  0.2939330589634109, -0.0682629380550051, -0.2895448882503687, -0.0457239396341685, -0.8139899477847840,  // NOLINT
 
-              -0.3247764582762654,  0.4528151365941945, -0.0276683863102816, -0.6155994592510784,  0.1489240599972848,  0.5362574892189350;  // NOLINT
 
-     Vector Ddiag(6);
 
-     Ddiag << 1.0, 2.0, 4.0, 8.0, 16.0, 32.0;
 
-     Matrix sqrtD = Ddiag.array().sqrt().matrix().asDiagonal();
 
-     Matrix jacobian = sqrtD * basis;
 
-     jacobian_.reset(new DenseSparseMatrix(jacobian));
 
-     Vector minimum(6);
 
-     minimum << 1.0, 1.0, 1.0, 1.0, 1.0, 1.0;
 
-     residual_ = -jacobian * minimum;
 
-     x_.resize(6);
 
-     x_.setZero();
 
-     options_.min_lm_diagonal = 1.0;
 
-     options_.max_lm_diagonal = 1.0;
 
-   }
 
- };
 
- // A test problem where
 
- //
 
- //   J^T J = diag([1 2 4 8 16 32]) .
 
- //
 
- // The residual is chosen so that the minimum of the quadratic function is
 
- // at (0, 0, 1, 0, 0, 0). It is therefore at a distance of 1 from the origin.
 
- // The gradient at the origin points towards the global minimum.
 
- class DoglegStrategyFixtureValley : public Fixture {
 
-  protected:
 
-   void SetUp() final {
 
-     Vector Ddiag(6);
 
-     Ddiag << 1.0, 2.0, 4.0, 8.0, 16.0, 32.0;
 
-     Matrix jacobian = Ddiag.asDiagonal();
 
-     jacobian_.reset(new DenseSparseMatrix(jacobian));
 
-     Vector minimum(6);
 
-     minimum << 0.0, 0.0, 1.0, 0.0, 0.0, 0.0;
 
-     residual_ = -jacobian * minimum;
 
-     x_.resize(6);
 
-     x_.setZero();
 
-     options_.min_lm_diagonal = 1.0;
 
-     options_.max_lm_diagonal = 1.0;
 
-   }
 
- };
 
- const double kTolerance = 1e-14;
 
- const double kToleranceLoose = 1e-5;
 
- const double kEpsilon = std::numeric_limits<double>::epsilon();
 
- }  // namespace
 
- // The DoglegStrategy must never return a step that is longer than the current
 
- // trust region radius.
 
- TEST_F(DoglegStrategyFixtureEllipse, TrustRegionObeyedTraditional) {
 
-   std::unique_ptr<LinearSolver> linear_solver(
 
-       new DenseQRSolver(LinearSolver::Options()));
 
-   options_.linear_solver = linear_solver.get();
 
-   // The global minimum is at (1, 1, ..., 1), so the distance to it is
 
-   // sqrt(6.0).  By restricting the trust region to a radius of 2.0,
 
-   // we test if the trust region is actually obeyed.
 
-   options_.dogleg_type = TRADITIONAL_DOGLEG;
 
-   options_.initial_radius = 2.0;
 
-   options_.max_radius = 2.0;
 
-   DoglegStrategy strategy(options_);
 
-   TrustRegionStrategy::PerSolveOptions pso;
 
-   TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso,
 
-                                                               jacobian_.get(),
 
-                                                               residual_.data(),
 
-                                                               x_.data());
 
-   EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
 
-   EXPECT_LE(x_.norm(), options_.initial_radius * (1.0 + 4.0 * kEpsilon));
 
- }
 
- TEST_F(DoglegStrategyFixtureEllipse, TrustRegionObeyedSubspace) {
 
-   std::unique_ptr<LinearSolver> linear_solver(
 
-       new DenseQRSolver(LinearSolver::Options()));
 
-   options_.linear_solver = linear_solver.get();
 
-   options_.dogleg_type = SUBSPACE_DOGLEG;
 
-   options_.initial_radius = 2.0;
 
-   options_.max_radius = 2.0;
 
-   DoglegStrategy strategy(options_);
 
-   TrustRegionStrategy::PerSolveOptions pso;
 
-   TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso,
 
-                                                               jacobian_.get(),
 
-                                                               residual_.data(),
 
-                                                               x_.data());
 
-   EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
 
-   EXPECT_LE(x_.norm(), options_.initial_radius * (1.0 + 4.0 * kEpsilon));
 
- }
 
- TEST_F(DoglegStrategyFixtureEllipse, CorrectGaussNewtonStep) {
 
-   std::unique_ptr<LinearSolver> linear_solver(
 
-       new DenseQRSolver(LinearSolver::Options()));
 
-   options_.linear_solver = linear_solver.get();
 
-   options_.dogleg_type = SUBSPACE_DOGLEG;
 
-   options_.initial_radius = 10.0;
 
-   options_.max_radius = 10.0;
 
-   DoglegStrategy strategy(options_);
 
-   TrustRegionStrategy::PerSolveOptions pso;
 
-   TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso,
 
-                                                               jacobian_.get(),
 
-                                                               residual_.data(),
 
-                                                               x_.data());
 
-   EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
 
-   EXPECT_NEAR(x_(0), 1.0, kToleranceLoose);
 
-   EXPECT_NEAR(x_(1), 1.0, kToleranceLoose);
 
-   EXPECT_NEAR(x_(2), 1.0, kToleranceLoose);
 
-   EXPECT_NEAR(x_(3), 1.0, kToleranceLoose);
 
-   EXPECT_NEAR(x_(4), 1.0, kToleranceLoose);
 
-   EXPECT_NEAR(x_(5), 1.0, kToleranceLoose);
 
- }
 
- // Test if the subspace basis is a valid orthonormal basis of the space spanned
 
- // by the gradient and the Gauss-Newton point.
 
- TEST_F(DoglegStrategyFixtureEllipse, ValidSubspaceBasis) {
 
-   std::unique_ptr<LinearSolver> linear_solver(
 
-       new DenseQRSolver(LinearSolver::Options()));
 
-   options_.linear_solver = linear_solver.get();
 
-   options_.dogleg_type = SUBSPACE_DOGLEG;
 
-   options_.initial_radius = 2.0;
 
-   options_.max_radius = 2.0;
 
-   DoglegStrategy strategy(options_);
 
-   TrustRegionStrategy::PerSolveOptions pso;
 
-   strategy.ComputeStep(pso, jacobian_.get(), residual_.data(), x_.data());
 
-   // Check if the basis is orthonormal.
 
-   const Matrix basis = strategy.subspace_basis();
 
-   EXPECT_NEAR(basis.col(0).norm(), 1.0, kTolerance);
 
-   EXPECT_NEAR(basis.col(1).norm(), 1.0, kTolerance);
 
-   EXPECT_NEAR(basis.col(0).dot(basis.col(1)), 0.0, kTolerance);
 
-   // Check if the gradient projects onto itself.
 
-   const Vector gradient = strategy.gradient();
 
-   EXPECT_NEAR((gradient - basis*(basis.transpose()*gradient)).norm(),
 
-               0.0,
 
-               kTolerance);
 
-   // Check if the Gauss-Newton point projects onto itself.
 
-   const Vector gn = strategy.gauss_newton_step();
 
-   EXPECT_NEAR((gn - basis*(basis.transpose()*gn)).norm(),
 
-               0.0,
 
-               kTolerance);
 
- }
 
- // Test if the step is correct if the gradient and the Gauss-Newton step point
 
- // in the same direction and the Gauss-Newton step is outside the trust region,
 
- // i.e. the trust region is active.
 
- TEST_F(DoglegStrategyFixtureValley, CorrectStepLocalOptimumAlongGradient) {
 
-   std::unique_ptr<LinearSolver> linear_solver(
 
-       new DenseQRSolver(LinearSolver::Options()));
 
-   options_.linear_solver = linear_solver.get();
 
-   options_.dogleg_type = SUBSPACE_DOGLEG;
 
-   options_.initial_radius = 0.25;
 
-   options_.max_radius = 0.25;
 
-   DoglegStrategy strategy(options_);
 
-   TrustRegionStrategy::PerSolveOptions pso;
 
-   TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso,
 
-                                                               jacobian_.get(),
 
-                                                               residual_.data(),
 
-                                                               x_.data());
 
-   EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
 
-   EXPECT_NEAR(x_(0), 0.0, kToleranceLoose);
 
-   EXPECT_NEAR(x_(1), 0.0, kToleranceLoose);
 
-   EXPECT_NEAR(x_(2), options_.initial_radius, kToleranceLoose);
 
-   EXPECT_NEAR(x_(3), 0.0, kToleranceLoose);
 
-   EXPECT_NEAR(x_(4), 0.0, kToleranceLoose);
 
-   EXPECT_NEAR(x_(5), 0.0, kToleranceLoose);
 
- }
 
- // Test if the step is correct if the gradient and the Gauss-Newton step point
 
- // in the same direction and the Gauss-Newton step is inside the trust region,
 
- // i.e. the trust region is inactive.
 
- TEST_F(DoglegStrategyFixtureValley, CorrectStepGlobalOptimumAlongGradient) {
 
-   std::unique_ptr<LinearSolver> linear_solver(
 
-       new DenseQRSolver(LinearSolver::Options()));
 
-   options_.linear_solver = linear_solver.get();
 
-   options_.dogleg_type = SUBSPACE_DOGLEG;
 
-   options_.initial_radius = 2.0;
 
-   options_.max_radius = 2.0;
 
-   DoglegStrategy strategy(options_);
 
-   TrustRegionStrategy::PerSolveOptions pso;
 
-   TrustRegionStrategy::Summary summary = strategy.ComputeStep(pso,
 
-                                                               jacobian_.get(),
 
-                                                               residual_.data(),
 
-                                                               x_.data());
 
-   EXPECT_NE(summary.termination_type, LINEAR_SOLVER_FAILURE);
 
-   EXPECT_NEAR(x_(0), 0.0, kToleranceLoose);
 
-   EXPECT_NEAR(x_(1), 0.0, kToleranceLoose);
 
-   EXPECT_NEAR(x_(2), 1.0, kToleranceLoose);
 
-   EXPECT_NEAR(x_(3), 0.0, kToleranceLoose);
 
-   EXPECT_NEAR(x_(4), 0.0, kToleranceLoose);
 
-   EXPECT_NEAR(x_(5), 0.0, kToleranceLoose);
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |