| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: strandmark@google.com (Petter Strandmark)#ifndef CERES_INTERNAL_CXSPARSE_H_#define CERES_INTERNAL_CXSPARSE_H_// This include must come before any #ifndef check on Ceres compile options.#include "ceres/internal/port.h"#ifndef CERES_NO_CXSPARSE#include <memory>#include <string>#include <vector>#include "ceres/linear_solver.h"#include "ceres/sparse_cholesky.h"#include "cs.h"namespace ceres {namespace internal {class CompressedRowSparseMatrix;class TripletSparseMatrix;// This object provides access to solving linear systems using Cholesky// factorization with a known symbolic factorization. This features does not// explicitly exist in CXSparse. The methods in the class are nonstatic because// the class manages internal scratch space.class CXSparse { public:  CXSparse();  ~CXSparse();  // Solve the system lhs * solution = rhs in place by using an  // approximate minimum degree fill reducing ordering.  bool SolveCholesky(cs_di* lhs, double* rhs_and_solution);  // Solves a linear system given its symbolic and numeric factorization.  void Solve(cs_dis* symbolic_factor,             csn* numeric_factor,             double* rhs_and_solution);  // Compute the numeric Cholesky factorization of A, given its  // symbolic factorization.  //  // Caller owns the result.  csn* Cholesky(cs_di* A, cs_dis* symbolic_factor);  // Creates a sparse matrix from a compressed-column form. No memory is  // allocated or copied; the structure A is filled out with info from the  // argument.  cs_di CreateSparseMatrixTransposeView(CompressedRowSparseMatrix* A);  // Creates a new matrix from a triplet form. Deallocate the returned matrix  // with Free. May return NULL if the compression or allocation fails.  cs_di* CreateSparseMatrix(TripletSparseMatrix* A);  // B = A'  //  // The returned matrix should be deallocated with Free when not used  // anymore.  cs_di* TransposeMatrix(cs_di* A);  // C = A * B  //  // The returned matrix should be deallocated with Free when not used  // anymore.  cs_di* MatrixMatrixMultiply(cs_di* A, cs_di* B);  // Computes a symbolic factorization of A that can be used in SolveCholesky.  //  // The returned matrix should be deallocated with Free when not used anymore.  cs_dis* AnalyzeCholesky(cs_di* A);  // Computes a symbolic factorization of A that can be used in  // SolveCholesky, but does not compute a fill-reducing ordering.  //  // The returned matrix should be deallocated with Free when not used anymore.  cs_dis* AnalyzeCholeskyWithNaturalOrdering(cs_di* A);  // Computes a symbolic factorization of A that can be used in  // SolveCholesky. The difference from AnalyzeCholesky is that this  // function first detects the block sparsity of the matrix using  // information about the row and column blocks and uses this block  // sparse matrix to find a fill-reducing ordering. This ordering is  // then used to find a symbolic factorization. This can result in a  // significant performance improvement AnalyzeCholesky on block  // sparse matrices.  //  // The returned matrix should be deallocated with Free when not used  // anymore.  cs_dis* BlockAnalyzeCholesky(cs_di* A,                               const std::vector<int>& row_blocks,                               const std::vector<int>& col_blocks);  // Compute an fill-reducing approximate minimum degree ordering of  // the matrix A. ordering should be non-NULL and should point to  // enough memory to hold the ordering for the rows of A.  void ApproximateMinimumDegreeOrdering(cs_di* A, int* ordering);  void Free(cs_di* sparse_matrix);  void Free(cs_dis* symbolic_factorization);  void Free(csn* numeric_factorization); private:  // Cached scratch space  CS_ENTRY* scratch_;  int scratch_size_;};// An implementation of SparseCholesky interface using the CXSparse// library.class CXSparseCholesky : public SparseCholesky { public:  // Factory  static std::unique_ptr<SparseCholesky> Create(OrderingType ordering_type);  // SparseCholesky interface.  virtual ~CXSparseCholesky();  CompressedRowSparseMatrix::StorageType StorageType() const final;  LinearSolverTerminationType Factorize(CompressedRowSparseMatrix* lhs,                                        std::string* message) final;  LinearSolverTerminationType Solve(const double* rhs,                                    double* solution,                                    std::string* message) final; private:  CXSparseCholesky(const OrderingType ordering_type);  void FreeSymbolicFactorization();  void FreeNumericFactorization();  const OrderingType ordering_type_;  CXSparse cs_;  cs_dis* symbolic_factor_;  csn* numeric_factor_;};}  // namespace internal}  // namespace ceres#else   // CERES_NO_CXSPARSEtypedef void cs_dis;class CXSparse { public:  void Free(void* arg) {}};#endif  // CERES_NO_CXSPARSE#endif  // CERES_INTERNAL_CXSPARSE_H_
 |