| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2019 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #ifndef CERES_PUBLIC_COVARIANCE_H_
 
- #define CERES_PUBLIC_COVARIANCE_H_
 
- #include <memory>
 
- #include <utility>
 
- #include <vector>
 
- #include "ceres/internal/disable_warnings.h"
 
- #include "ceres/internal/port.h"
 
- #include "ceres/types.h"
 
- namespace ceres {
 
- class Problem;
 
- namespace internal {
 
- class CovarianceImpl;
 
- }  // namespace internal
 
- // WARNING
 
- // =======
 
- // It is very easy to use this class incorrectly without understanding
 
- // the underlying mathematics. Please read and understand the
 
- // documentation completely before attempting to use this class.
 
- //
 
- //
 
- // This class allows the user to evaluate the covariance for a
 
- // non-linear least squares problem and provides random access to its
 
- // blocks
 
- //
 
- // Background
 
- // ==========
 
- // One way to assess the quality of the solution returned by a
 
- // non-linear least squares solver is to analyze the covariance of the
 
- // solution.
 
- //
 
- // Let us consider the non-linear regression problem
 
- //
 
- //   y = f(x) + N(0, I)
 
- //
 
- // i.e., the observation y is a random non-linear function of the
 
- // independent variable x with mean f(x) and identity covariance. Then
 
- // the maximum likelihood estimate of x given observations y is the
 
- // solution to the non-linear least squares problem:
 
- //
 
- //  x* = arg min_x |f(x)|^2
 
- //
 
- // And the covariance of x* is given by
 
- //
 
- //  C(x*) = inverse[J'(x*)J(x*)]
 
- //
 
- // Here J(x*) is the Jacobian of f at x*. The above formula assumes
 
- // that J(x*) has full column rank.
 
- //
 
- // If J(x*) is rank deficient, then the covariance matrix C(x*) is
 
- // also rank deficient and is given by
 
- //
 
- //  C(x*) =  pseudoinverse[J'(x*)J(x*)]
 
- //
 
- // Note that in the above, we assumed that the covariance
 
- // matrix for y was identity. This is an important assumption. If this
 
- // is not the case and we have
 
- //
 
- //  y = f(x) + N(0, S)
 
- //
 
- // Where S is a positive semi-definite matrix denoting the covariance
 
- // of y, then the maximum likelihood problem to be solved is
 
- //
 
- //  x* = arg min_x f'(x) inverse[S] f(x)
 
- //
 
- // and the corresponding covariance estimate of x* is given by
 
- //
 
- //  C(x*) = inverse[J'(x*) inverse[S] J(x*)]
 
- //
 
- // So, if it is the case that the observations being fitted to have a
 
- // covariance matrix not equal to identity, then it is the user's
 
- // responsibility that the corresponding cost functions are correctly
 
- // scaled, e.g. in the above case the cost function for this problem
 
- // should evaluate S^{-1/2} f(x) instead of just f(x), where S^{-1/2}
 
- // is the inverse square root of the covariance matrix S.
 
- //
 
- // This class allows the user to evaluate the covariance for a
 
- // non-linear least squares problem and provides random access to its
 
- // blocks. The computation assumes that the CostFunctions compute
 
- // residuals such that their covariance is identity.
 
- //
 
- // Since the computation of the covariance matrix requires computing
 
- // the inverse of a potentially large matrix, this can involve a
 
- // rather large amount of time and memory. However, it is usually the
 
- // case that the user is only interested in a small part of the
 
- // covariance matrix. Quite often just the block diagonal. This class
 
- // allows the user to specify the parts of the covariance matrix that
 
- // she is interested in and then uses this information to only compute
 
- // and store those parts of the covariance matrix.
 
- //
 
- // Rank of the Jacobian
 
- // --------------------
 
- // As we noted above, if the jacobian is rank deficient, then the
 
- // inverse of J'J is not defined and instead a pseudo inverse needs to
 
- // be computed.
 
- //
 
- // The rank deficiency in J can be structural -- columns which are
 
- // always known to be zero or numerical -- depending on the exact
 
- // values in the Jacobian.
 
- //
 
- // Structural rank deficiency occurs when the problem contains
 
- // parameter blocks that are constant. This class correctly handles
 
- // structural rank deficiency like that.
 
- //
 
- // Numerical rank deficiency, where the rank of the matrix cannot be
 
- // predicted by its sparsity structure and requires looking at its
 
- // numerical values is more complicated. Here again there are two
 
- // cases.
 
- //
 
- //   a. The rank deficiency arises from overparameterization. e.g., a
 
- //   four dimensional quaternion used to parameterize SO(3), which is
 
- //   a three dimensional manifold. In cases like this, the user should
 
- //   use an appropriate LocalParameterization. Not only will this lead
 
- //   to better numerical behaviour of the Solver, it will also expose
 
- //   the rank deficiency to the Covariance object so that it can
 
- //   handle it correctly.
 
- //
 
- //   b. More general numerical rank deficiency in the Jacobian
 
- //   requires the computation of the so called Singular Value
 
- //   Decomposition (SVD) of J'J. We do not know how to do this for
 
- //   large sparse matrices efficiently. For small and moderate sized
 
- //   problems this is done using dense linear algebra.
 
- //
 
- // Gauge Invariance
 
- // ----------------
 
- // In structure from motion (3D reconstruction) problems, the
 
- // reconstruction is ambiguous up to a similarity transform. This is
 
- // known as a Gauge Ambiguity. Handling Gauges correctly requires the
 
- // use of SVD or custom inversion algorithms. For small problems the
 
- // user can use the dense algorithm. For more details see
 
- //
 
- // Ken-ichi Kanatani, Daniel D. Morris: Gauges and gauge
 
- // transformations for uncertainty description of geometric structure
 
- // with indeterminacy. IEEE Transactions on Information Theory 47(5):
 
- // 2017-2028 (2001)
 
- //
 
- // Example Usage
 
- // =============
 
- //
 
- //  double x[3];
 
- //  double y[2];
 
- //
 
- //  Problem problem;
 
- //  problem.AddParameterBlock(x, 3);
 
- //  problem.AddParameterBlock(y, 2);
 
- //  <Build Problem>
 
- //  <Solve Problem>
 
- //
 
- //  Covariance::Options options;
 
- //  Covariance covariance(options);
 
- //
 
- //  std::vector<std::pair<const double*, const double*>> covariance_blocks;
 
- //  covariance_blocks.push_back(make_pair(x, x));
 
- //  covariance_blocks.push_back(make_pair(y, y));
 
- //  covariance_blocks.push_back(make_pair(x, y));
 
- //
 
- //  CHECK(covariance.Compute(covariance_blocks, &problem));
 
- //
 
- //  double covariance_xx[3 * 3];
 
- //  double covariance_yy[2 * 2];
 
- //  double covariance_xy[3 * 2];
 
- //  covariance.GetCovarianceBlock(x, x, covariance_xx)
 
- //  covariance.GetCovarianceBlock(y, y, covariance_yy)
 
- //  covariance.GetCovarianceBlock(x, y, covariance_xy)
 
- //
 
- class CERES_EXPORT Covariance {
 
-  public:
 
-   struct CERES_EXPORT Options {
 
-     // Sparse linear algebra library to use when a sparse matrix
 
-     // factorization is being used to compute the covariance matrix.
 
-     //
 
-     // Currently this only applies to SPARSE_QR.
 
-     SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type =
 
- #if !defined(CERES_NO_SUITESPARSE)
 
-         SUITE_SPARSE;
 
- #else
 
-         // Eigen's QR factorization is always available.
 
-         EIGEN_SPARSE;
 
- #endif
 
-     // Ceres supports two different algorithms for covariance
 
-     // estimation, which represent different tradeoffs in speed,
 
-     // accuracy and reliability.
 
-     //
 
-     // 1. DENSE_SVD uses Eigen's JacobiSVD to perform the
 
-     //    computations. It computes the singular value decomposition
 
-     //
 
-     //      U * S * V' = J
 
-     //
 
-     //    and then uses it to compute the pseudo inverse of J'J as
 
-     //
 
-     //      pseudoinverse[J'J]^ = V * pseudoinverse[S] * V'
 
-     //
 
-     //    It is an accurate but slow method and should only be used
 
-     //    for small to moderate sized problems. It can handle
 
-     //    full-rank as well as rank deficient Jacobians.
 
-     //
 
-     // 2. SPARSE_QR uses the sparse QR factorization algorithm
 
-     //    to compute the decomposition
 
-     //
 
-     //      Q * R = J
 
-     //
 
-     //    [J'J]^-1 = [R*R']^-1
 
-     //
 
-     // SPARSE_QR is not capable of computing the covariance if the
 
-     // Jacobian is rank deficient. Depending on the value of
 
-     // Covariance::Options::sparse_linear_algebra_library_type, either
 
-     // Eigen's Sparse QR factorization algorithm will be used or
 
-     // SuiteSparse's high performance SuiteSparseQR algorithm will be
 
-     // used.
 
-     CovarianceAlgorithmType algorithm_type = SPARSE_QR;
 
-     // If the Jacobian matrix is near singular, then inverting J'J
 
-     // will result in unreliable results, e.g, if
 
-     //
 
-     //   J = [1.0 1.0         ]
 
-     //       [1.0 1.0000001   ]
 
-     //
 
-     // which is essentially a rank deficient matrix, we have
 
-     //
 
-     //   inv(J'J) = [ 2.0471e+14  -2.0471e+14]
 
-     //              [-2.0471e+14   2.0471e+14]
 
-     //
 
-     // This is not a useful result. Therefore, by default
 
-     // Covariance::Compute will return false if a rank deficient
 
-     // Jacobian is encountered. How rank deficiency is detected
 
-     // depends on the algorithm being used.
 
-     //
 
-     // 1. DENSE_SVD
 
-     //
 
-     //      min_sigma / max_sigma < sqrt(min_reciprocal_condition_number)
 
-     //
 
-     //    where min_sigma and max_sigma are the minimum and maxiumum
 
-     //    singular values of J respectively.
 
-     //
 
-     // 2. SPARSE_QR
 
-     //
 
-     //      rank(J) < num_col(J)
 
-     //
 
-     //   Here rank(J) is the estimate of the rank of J returned by the
 
-     //   sparse QR factorization algorithm. It is a fairly reliable
 
-     //   indication of rank deficiency.
 
-     //
 
-     double min_reciprocal_condition_number = 1e-14;
 
-     // When using DENSE_SVD, the user has more control in dealing with
 
-     // singular and near singular covariance matrices.
 
-     //
 
-     // As mentioned above, when the covariance matrix is near
 
-     // singular, instead of computing the inverse of J'J, the
 
-     // Moore-Penrose pseudoinverse of J'J should be computed.
 
-     //
 
-     // If J'J has the eigen decomposition (lambda_i, e_i), where
 
-     // lambda_i is the i^th eigenvalue and e_i is the corresponding
 
-     // eigenvector, then the inverse of J'J is
 
-     //
 
-     //   inverse[J'J] = sum_i e_i e_i' / lambda_i
 
-     //
 
-     // and computing the pseudo inverse involves dropping terms from
 
-     // this sum that correspond to small eigenvalues.
 
-     //
 
-     // How terms are dropped is controlled by
 
-     // min_reciprocal_condition_number and null_space_rank.
 
-     //
 
-     // If null_space_rank is non-negative, then the smallest
 
-     // null_space_rank eigenvalue/eigenvectors are dropped
 
-     // irrespective of the magnitude of lambda_i. If the ratio of the
 
-     // smallest non-zero eigenvalue to the largest eigenvalue in the
 
-     // truncated matrix is still below
 
-     // min_reciprocal_condition_number, then the Covariance::Compute()
 
-     // will fail and return false.
 
-     //
 
-     // Setting null_space_rank = -1 drops all terms for which
 
-     //
 
-     //   lambda_i / lambda_max < min_reciprocal_condition_number.
 
-     //
 
-     // This option has no effect on the SUITE_SPARSE_QR and
 
-     // EIGEN_SPARSE_QR algorithms.
 
-     int null_space_rank = 0;
 
-     int num_threads = 1;
 
-     // Even though the residual blocks in the problem may contain loss
 
-     // functions, setting apply_loss_function to false will turn off
 
-     // the application of the loss function to the output of the cost
 
-     // function and in turn its effect on the covariance.
 
-     //
 
-     // TODO(sameergaarwal): Expand this based on Jim's experiments.
 
-     bool apply_loss_function = true;
 
-   };
 
-   explicit Covariance(const Options& options);
 
-   ~Covariance();
 
-   // Compute a part of the covariance matrix.
 
-   //
 
-   // The vector covariance_blocks, indexes into the covariance matrix
 
-   // block-wise using pairs of parameter blocks. This allows the
 
-   // covariance estimation algorithm to only compute and store these
 
-   // blocks.
 
-   //
 
-   // Since the covariance matrix is symmetric, if the user passes
 
-   // (block1, block2), then GetCovarianceBlock can be called with
 
-   // block1, block2 as well as block2, block1.
 
-   //
 
-   // covariance_blocks cannot contain duplicates. Bad things will
 
-   // happen if they do.
 
-   //
 
-   // Note that the list of covariance_blocks is only used to determine
 
-   // what parts of the covariance matrix are computed. The full
 
-   // Jacobian is used to do the computation, i.e. they do not have an
 
-   // impact on what part of the Jacobian is used for computation.
 
-   //
 
-   // The return value indicates the success or failure of the
 
-   // covariance computation. Please see the documentation for
 
-   // Covariance::Options for more on the conditions under which this
 
-   // function returns false.
 
-   bool Compute(const std::vector<std::pair<const double*, const double*>>&
 
-                    covariance_blocks,
 
-                Problem* problem);
 
-   // Compute a part of the covariance matrix.
 
-   //
 
-   // The vector parameter_blocks contains the parameter blocks that
 
-   // are used for computing the covariance matrix. From this vector
 
-   // all covariance pairs are generated. This allows the covariance
 
-   // estimation algorithm to only compute and store these blocks.
 
-   //
 
-   // parameter_blocks cannot contain duplicates. Bad things will
 
-   // happen if they do.
 
-   //
 
-   // Note that the list of covariance_blocks is only used to determine
 
-   // what parts of the covariance matrix are computed. The full
 
-   // Jacobian is used to do the computation, i.e. they do not have an
 
-   // impact on what part of the Jacobian is used for computation.
 
-   //
 
-   // The return value indicates the success or failure of the
 
-   // covariance computation. Please see the documentation for
 
-   // Covariance::Options for more on the conditions under which this
 
-   // function returns false.
 
-   bool Compute(const std::vector<const double*>& parameter_blocks,
 
-                Problem* problem);
 
-   // Return the block of the cross-covariance matrix corresponding to
 
-   // parameter_block1 and parameter_block2.
 
-   //
 
-   // Compute must be called before the first call to
 
-   // GetCovarianceBlock and the pair <parameter_block1,
 
-   // parameter_block2> OR the pair <parameter_block2,
 
-   // parameter_block1> must have been present in the vector
 
-   // covariance_blocks when Compute was called. Otherwise
 
-   // GetCovarianceBlock will return false.
 
-   //
 
-   // covariance_block must point to a memory location that can store a
 
-   // parameter_block1_size x parameter_block2_size matrix. The
 
-   // returned covariance will be a row-major matrix.
 
-   bool GetCovarianceBlock(const double* parameter_block1,
 
-                           const double* parameter_block2,
 
-                           double* covariance_block) const;
 
-   // Return the block of the cross-covariance matrix corresponding to
 
-   // parameter_block1 and parameter_block2.
 
-   // Returns cross-covariance in the tangent space if a local
 
-   // parameterization is associated with either parameter block;
 
-   // else returns cross-covariance in the ambient space.
 
-   //
 
-   // Compute must be called before the first call to
 
-   // GetCovarianceBlock and the pair <parameter_block1,
 
-   // parameter_block2> OR the pair <parameter_block2,
 
-   // parameter_block1> must have been present in the vector
 
-   // covariance_blocks when Compute was called. Otherwise
 
-   // GetCovarianceBlock will return false.
 
-   //
 
-   // covariance_block must point to a memory location that can store a
 
-   // parameter_block1_local_size x parameter_block2_local_size matrix. The
 
-   // returned covariance will be a row-major matrix.
 
-   bool GetCovarianceBlockInTangentSpace(const double* parameter_block1,
 
-                                         const double* parameter_block2,
 
-                                         double* covariance_block) const;
 
-   // Return the covariance matrix corresponding to all parameter_blocks.
 
-   //
 
-   // Compute must be called before calling GetCovarianceMatrix and all
 
-   // parameter_blocks must have been present in the vector
 
-   // parameter_blocks when Compute was called. Otherwise
 
-   // GetCovarianceMatrix returns false.
 
-   //
 
-   // covariance_matrix must point to a memory location that can store
 
-   // the size of the covariance matrix. The covariance matrix will be
 
-   // a square matrix whose row and column count is equal to the sum of
 
-   // the sizes of the individual parameter blocks. The covariance
 
-   // matrix will be a row-major matrix.
 
-   bool GetCovarianceMatrix(const std::vector<const double*>& parameter_blocks,
 
-                            double* covariance_matrix);
 
-   // Return the covariance matrix corresponding to parameter_blocks
 
-   // in the tangent space if a local parameterization is associated
 
-   // with one of the parameter blocks else returns the covariance
 
-   // matrix in the ambient space.
 
-   //
 
-   // Compute must be called before calling GetCovarianceMatrix and all
 
-   // parameter_blocks must have been present in the vector
 
-   // parameters_blocks when Compute was called. Otherwise
 
-   // GetCovarianceMatrix returns false.
 
-   //
 
-   // covariance_matrix must point to a memory location that can store
 
-   // the size of the covariance matrix. The covariance matrix will be
 
-   // a square matrix whose row and column count is equal to the sum of
 
-   // the sizes of the tangent spaces of the individual parameter
 
-   // blocks. The covariance matrix will be a row-major matrix.
 
-   bool GetCovarianceMatrixInTangentSpace(
 
-       const std::vector<const double*>& parameter_blocks,
 
-       double* covariance_matrix);
 
-  private:
 
-   std::unique_ptr<internal::CovarianceImpl> impl_;
 
- };
 
- }  // namespace ceres
 
- #include "ceres/internal/reenable_warnings.h"
 
- #endif  // CERES_PUBLIC_COVARIANCE_H_
 
 
  |