| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: strandmark@google.com (Petter Strandmark)
 
- //
 
- // Denoising using Fields of Experts and the Ceres minimizer.
 
- //
 
- // Note that for good denoising results the weighting between the data term
 
- // and the Fields of Experts term needs to be adjusted. This is discussed
 
- // in [1]. This program assumes Gaussian noise. The noise model can be changed
 
- // by substituing another function for QuadraticCostFunction.
 
- //
 
- // [1] S. Roth and M.J. Black. "Fields of Experts." International Journal of
 
- //     Computer Vision, 82(2):205--229, 2009.
 
- #include <algorithm>
 
- #include <cmath>
 
- #include <iostream>
 
- #include <random>
 
- #include <sstream>
 
- #include <string>
 
- #include <vector>
 
- #include "ceres/ceres.h"
 
- #include "fields_of_experts.h"
 
- #include "gflags/gflags.h"
 
- #include "glog/logging.h"
 
- #include "pgm_image.h"
 
- DEFINE_string(input, "", "File to which the output image should be written");
 
- DEFINE_string(foe_file, "", "FoE file to use");
 
- DEFINE_string(output, "", "File to which the output image should be written");
 
- DEFINE_double(sigma, 20.0, "Standard deviation of noise");
 
- DEFINE_string(trust_region_strategy,
 
-               "levenberg_marquardt",
 
-               "Options are: levenberg_marquardt, dogleg.");
 
- DEFINE_string(dogleg,
 
-               "traditional_dogleg",
 
-               "Options are: traditional_dogleg,"
 
-               "subspace_dogleg.");
 
- DEFINE_string(linear_solver,
 
-               "sparse_normal_cholesky",
 
-               "Options are: "
 
-               "sparse_normal_cholesky and cgnr.");
 
- DEFINE_string(preconditioner,
 
-               "jacobi",
 
-               "Options are: "
 
-               "identity, jacobi, subset");
 
- DEFINE_string(sparse_linear_algebra_library,
 
-               "suite_sparse",
 
-               "Options are: suite_sparse, cx_sparse and eigen_sparse");
 
- DEFINE_double(eta,
 
-               1e-2,
 
-               "Default value for eta. Eta determines the "
 
-               "accuracy of each linear solve of the truncated newton step. "
 
-               "Changing this parameter can affect solve performance.");
 
- DEFINE_int32(num_threads, 1, "Number of threads.");
 
- DEFINE_int32(num_iterations, 10, "Number of iterations.");
 
- DEFINE_bool(nonmonotonic_steps,
 
-             false,
 
-             "Trust region algorithm can use"
 
-             " nonmonotic steps.");
 
- DEFINE_bool(inner_iterations,
 
-             false,
 
-             "Use inner iterations to non-linearly "
 
-             "refine each successful trust region step.");
 
- DEFINE_bool(mixed_precision_solves, false, "Use mixed precision solves.");
 
- DEFINE_int32(max_num_refinement_iterations,
 
-              0,
 
-              "Iterative refinement iterations");
 
- DEFINE_bool(line_search,
 
-             false,
 
-             "Use a line search instead of trust region "
 
-             "algorithm.");
 
- DEFINE_double(subset_fraction,
 
-               0.2,
 
-               "The fraction of residual blocks to use for the"
 
-               " subset preconditioner.");
 
- namespace ceres {
 
- namespace examples {
 
- namespace {
 
- // This cost function is used to build the data term.
 
- //
 
- //   f_i(x) = a * (x_i - b)^2
 
- //
 
- class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> {
 
-  public:
 
-   QuadraticCostFunction(double a, double b) : sqrta_(std::sqrt(a)), b_(b) {}
 
-   virtual bool Evaluate(double const* const* parameters,
 
-                         double* residuals,
 
-                         double** jacobians) const {
 
-     const double x = parameters[0][0];
 
-     residuals[0] = sqrta_ * (x - b_);
 
-     if (jacobians != NULL && jacobians[0] != NULL) {
 
-       jacobians[0][0] = sqrta_;
 
-     }
 
-     return true;
 
-   }
 
-  private:
 
-   double sqrta_, b_;
 
- };
 
- // Creates a Fields of Experts MAP inference problem.
 
- void CreateProblem(const FieldsOfExperts& foe,
 
-                    const PGMImage<double>& image,
 
-                    Problem* problem,
 
-                    PGMImage<double>* solution) {
 
-   // Create the data term
 
-   CHECK_GT(CERES_GET_FLAG(FLAGS_sigma), 0.0);
 
-   const double coefficient =
 
-       1 / (2.0 * CERES_GET_FLAG(FLAGS_sigma) * CERES_GET_FLAG(FLAGS_sigma));
 
-   for (int index = 0; index < image.NumPixels(); ++index) {
 
-     ceres::CostFunction* cost_function = new QuadraticCostFunction(
 
-         coefficient, image.PixelFromLinearIndex(index));
 
-     problem->AddResidualBlock(
 
-         cost_function, NULL, solution->MutablePixelFromLinearIndex(index));
 
-   }
 
-   // Create Ceres cost and loss functions for regularization. One is needed for
 
-   // each filter.
 
-   std::vector<ceres::LossFunction*> loss_function(foe.NumFilters());
 
-   std::vector<ceres::CostFunction*> cost_function(foe.NumFilters());
 
-   for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) {
 
-     loss_function[alpha_index] = foe.NewLossFunction(alpha_index);
 
-     cost_function[alpha_index] = foe.NewCostFunction(alpha_index);
 
-   }
 
-   // Add FoE regularization for each patch in the image.
 
-   for (int x = 0; x < image.width() - (foe.Size() - 1); ++x) {
 
-     for (int y = 0; y < image.height() - (foe.Size() - 1); ++y) {
 
-       // Build a vector with the pixel indices of this patch.
 
-       std::vector<double*> pixels;
 
-       const std::vector<int>& x_delta_indices = foe.GetXDeltaIndices();
 
-       const std::vector<int>& y_delta_indices = foe.GetYDeltaIndices();
 
-       for (int i = 0; i < foe.NumVariables(); ++i) {
 
-         double* pixel = solution->MutablePixel(x + x_delta_indices[i],
 
-                                                y + y_delta_indices[i]);
 
-         pixels.push_back(pixel);
 
-       }
 
-       // For this patch with coordinates (x, y), we will add foe.NumFilters()
 
-       // terms to the objective function.
 
-       for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) {
 
-         problem->AddResidualBlock(
 
-             cost_function[alpha_index], loss_function[alpha_index], pixels);
 
-       }
 
-     }
 
-   }
 
- }
 
- void SetLinearSolver(Solver::Options* options) {
 
-   CHECK(StringToLinearSolverType(CERES_GET_FLAG(FLAGS_linear_solver),
 
-                                  &options->linear_solver_type));
 
-   CHECK(StringToPreconditionerType(CERES_GET_FLAG(FLAGS_preconditioner),
 
-                                    &options->preconditioner_type));
 
-   CHECK(StringToSparseLinearAlgebraLibraryType(
 
-       CERES_GET_FLAG(FLAGS_sparse_linear_algebra_library),
 
-       &options->sparse_linear_algebra_library_type));
 
-   options->use_mixed_precision_solves =
 
-       CERES_GET_FLAG(FLAGS_mixed_precision_solves);
 
-   options->max_num_refinement_iterations =
 
-       CERES_GET_FLAG(FLAGS_max_num_refinement_iterations);
 
- }
 
- void SetMinimizerOptions(Solver::Options* options) {
 
-   options->max_num_iterations = CERES_GET_FLAG(FLAGS_num_iterations);
 
-   options->minimizer_progress_to_stdout = true;
 
-   options->num_threads = CERES_GET_FLAG(FLAGS_num_threads);
 
-   options->eta = CERES_GET_FLAG(FLAGS_eta);
 
-   options->use_nonmonotonic_steps = CERES_GET_FLAG(FLAGS_nonmonotonic_steps);
 
-   if (CERES_GET_FLAG(FLAGS_line_search)) {
 
-     options->minimizer_type = ceres::LINE_SEARCH;
 
-   }
 
-   CHECK(StringToTrustRegionStrategyType(
 
-       CERES_GET_FLAG(FLAGS_trust_region_strategy),
 
-       &options->trust_region_strategy_type));
 
-   CHECK(
 
-       StringToDoglegType(CERES_GET_FLAG(FLAGS_dogleg), &options->dogleg_type));
 
-   options->use_inner_iterations = CERES_GET_FLAG(FLAGS_inner_iterations);
 
- }
 
- // Solves the FoE problem using Ceres and post-processes it to make sure the
 
- // solution stays within [0, 255].
 
- void SolveProblem(Problem* problem, PGMImage<double>* solution) {
 
-   // These parameters may be experimented with. For example, ceres::DOGLEG tends
 
-   // to be faster for 2x2 filters, but gives solutions with slightly higher
 
-   // objective function value.
 
-   ceres::Solver::Options options;
 
-   SetMinimizerOptions(&options);
 
-   SetLinearSolver(&options);
 
-   options.function_tolerance = 1e-3;  // Enough for denoising.
 
-   if (options.linear_solver_type == ceres::CGNR &&
 
-       options.preconditioner_type == ceres::SUBSET) {
 
-     std::vector<ResidualBlockId> residual_blocks;
 
-     problem->GetResidualBlocks(&residual_blocks);
 
-     // To use the SUBSET preconditioner we need to provide a list of
 
-     // residual blocks (rows of the Jacobian). The denoising problem
 
-     // has fairly general sparsity, and there is no apriori reason to
 
-     // select one residual block over another, so we will randomly
 
-     // subsample the residual blocks with probability subset_fraction.
 
-     std::default_random_engine engine;
 
-     std::uniform_real_distribution<> distribution(0, 1);  // rage 0 - 1
 
-     for (auto residual_block : residual_blocks) {
 
-       if (distribution(engine) <= CERES_GET_FLAG(FLAGS_subset_fraction)) {
 
-         options.residual_blocks_for_subset_preconditioner.insert(
 
-             residual_block);
 
-       }
 
-     }
 
-   }
 
-   ceres::Solver::Summary summary;
 
-   ceres::Solve(options, problem, &summary);
 
-   std::cout << summary.FullReport() << "\n";
 
-   // Make the solution stay in [0, 255].
 
-   for (int x = 0; x < solution->width(); ++x) {
 
-     for (int y = 0; y < solution->height(); ++y) {
 
-       *solution->MutablePixel(x, y) =
 
-           std::min(255.0, std::max(0.0, solution->Pixel(x, y)));
 
-     }
 
-   }
 
- }
 
- }  // namespace
 
- }  // namespace examples
 
- }  // namespace ceres
 
- int main(int argc, char** argv) {
 
-   using namespace ceres::examples;
 
-   GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
 
-   google::InitGoogleLogging(argv[0]);
 
-   if (CERES_GET_FLAG(FLAGS_input).empty()) {
 
-     std::cerr << "Please provide an image file name using -input.\n";
 
-     return 1;
 
-   }
 
-   if (CERES_GET_FLAG(FLAGS_foe_file).empty()) {
 
-     std::cerr << "Please provide a Fields of Experts file name using -foe_file."
 
-                  "\n";
 
-     return 1;
 
-   }
 
-   // Load the Fields of Experts filters from file.
 
-   FieldsOfExperts foe;
 
-   if (!foe.LoadFromFile(CERES_GET_FLAG(FLAGS_foe_file))) {
 
-     std::cerr << "Loading \"" << CERES_GET_FLAG(FLAGS_foe_file)
 
-               << "\" failed.\n";
 
-     return 2;
 
-   }
 
-   // Read the images
 
-   PGMImage<double> image(CERES_GET_FLAG(FLAGS_input));
 
-   if (image.width() == 0) {
 
-     std::cerr << "Reading \"" << CERES_GET_FLAG(FLAGS_input) << "\" failed.\n";
 
-     return 3;
 
-   }
 
-   PGMImage<double> solution(image.width(), image.height());
 
-   solution.Set(0.0);
 
-   ceres::Problem problem;
 
-   CreateProblem(foe, image, &problem, &solution);
 
-   SolveProblem(&problem, &solution);
 
-   if (!CERES_GET_FLAG(FLAGS_output).empty()) {
 
-     CHECK(solution.WriteToFile(CERES_GET_FLAG(FLAGS_output)))
 
-         << "Writing \"" << CERES_GET_FLAG(FLAGS_output) << "\" failed.";
 
-   }
 
-   return 0;
 
- }
 
 
  |