| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: strandmark@google.com (Petter Strandmark)//// Denoising using Fields of Experts and the Ceres minimizer.//// Note that for good denoising results the weighting between the data term// and the Fields of Experts term needs to be adjusted. This is discussed// in [1]. This program assumes Gaussian noise. The noise model can be changed// by substituing another function for QuadraticCostFunction.//// [1] S. Roth and M.J. Black. "Fields of Experts." International Journal of//     Computer Vision, 82(2):205--229, 2009.#include <algorithm>#include <cmath>#include <iostream>#include <random>#include <sstream>#include <string>#include <vector>#include "ceres/ceres.h"#include "fields_of_experts.h"#include "gflags/gflags.h"#include "glog/logging.h"#include "pgm_image.h"DEFINE_string(input, "", "File to which the output image should be written");DEFINE_string(foe_file, "", "FoE file to use");DEFINE_string(output, "", "File to which the output image should be written");DEFINE_double(sigma, 20.0, "Standard deviation of noise");DEFINE_string(trust_region_strategy,              "levenberg_marquardt",              "Options are: levenberg_marquardt, dogleg.");DEFINE_string(dogleg,              "traditional_dogleg",              "Options are: traditional_dogleg,"              "subspace_dogleg.");DEFINE_string(linear_solver,              "sparse_normal_cholesky",              "Options are: "              "sparse_normal_cholesky and cgnr.");DEFINE_string(preconditioner,              "jacobi",              "Options are: "              "identity, jacobi, subset");DEFINE_string(sparse_linear_algebra_library,              "suite_sparse",              "Options are: suite_sparse, cx_sparse and eigen_sparse");DEFINE_double(eta,              1e-2,              "Default value for eta. Eta determines the "              "accuracy of each linear solve of the truncated newton step. "              "Changing this parameter can affect solve performance.");DEFINE_int32(num_threads, 1, "Number of threads.");DEFINE_int32(num_iterations, 10, "Number of iterations.");DEFINE_bool(nonmonotonic_steps,            false,            "Trust region algorithm can use"            " nonmonotic steps.");DEFINE_bool(inner_iterations,            false,            "Use inner iterations to non-linearly "            "refine each successful trust region step.");DEFINE_bool(mixed_precision_solves, false, "Use mixed precision solves.");DEFINE_int32(max_num_refinement_iterations,             0,             "Iterative refinement iterations");DEFINE_bool(line_search,            false,            "Use a line search instead of trust region "            "algorithm.");DEFINE_double(subset_fraction,              0.2,              "The fraction of residual blocks to use for the"              " subset preconditioner.");namespace ceres {namespace examples {namespace {// This cost function is used to build the data term.////   f_i(x) = a * (x_i - b)^2//class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> { public:  QuadraticCostFunction(double a, double b) : sqrta_(std::sqrt(a)), b_(b) {}  virtual bool Evaluate(double const* const* parameters,                        double* residuals,                        double** jacobians) const {    const double x = parameters[0][0];    residuals[0] = sqrta_ * (x - b_);    if (jacobians != NULL && jacobians[0] != NULL) {      jacobians[0][0] = sqrta_;    }    return true;  } private:  double sqrta_, b_;};// Creates a Fields of Experts MAP inference problem.void CreateProblem(const FieldsOfExperts& foe,                   const PGMImage<double>& image,                   Problem* problem,                   PGMImage<double>* solution) {  // Create the data term  CHECK_GT(CERES_GET_FLAG(FLAGS_sigma), 0.0);  const double coefficient =      1 / (2.0 * CERES_GET_FLAG(FLAGS_sigma) * CERES_GET_FLAG(FLAGS_sigma));  for (int index = 0; index < image.NumPixels(); ++index) {    ceres::CostFunction* cost_function = new QuadraticCostFunction(        coefficient, image.PixelFromLinearIndex(index));    problem->AddResidualBlock(        cost_function, NULL, solution->MutablePixelFromLinearIndex(index));  }  // Create Ceres cost and loss functions for regularization. One is needed for  // each filter.  std::vector<ceres::LossFunction*> loss_function(foe.NumFilters());  std::vector<ceres::CostFunction*> cost_function(foe.NumFilters());  for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) {    loss_function[alpha_index] = foe.NewLossFunction(alpha_index);    cost_function[alpha_index] = foe.NewCostFunction(alpha_index);  }  // Add FoE regularization for each patch in the image.  for (int x = 0; x < image.width() - (foe.Size() - 1); ++x) {    for (int y = 0; y < image.height() - (foe.Size() - 1); ++y) {      // Build a vector with the pixel indices of this patch.      std::vector<double*> pixels;      const std::vector<int>& x_delta_indices = foe.GetXDeltaIndices();      const std::vector<int>& y_delta_indices = foe.GetYDeltaIndices();      for (int i = 0; i < foe.NumVariables(); ++i) {        double* pixel = solution->MutablePixel(x + x_delta_indices[i],                                               y + y_delta_indices[i]);        pixels.push_back(pixel);      }      // For this patch with coordinates (x, y), we will add foe.NumFilters()      // terms to the objective function.      for (int alpha_index = 0; alpha_index < foe.NumFilters(); ++alpha_index) {        problem->AddResidualBlock(            cost_function[alpha_index], loss_function[alpha_index], pixels);      }    }  }}void SetLinearSolver(Solver::Options* options) {  CHECK(StringToLinearSolverType(CERES_GET_FLAG(FLAGS_linear_solver),                                 &options->linear_solver_type));  CHECK(StringToPreconditionerType(CERES_GET_FLAG(FLAGS_preconditioner),                                   &options->preconditioner_type));  CHECK(StringToSparseLinearAlgebraLibraryType(      CERES_GET_FLAG(FLAGS_sparse_linear_algebra_library),      &options->sparse_linear_algebra_library_type));  options->use_mixed_precision_solves =      CERES_GET_FLAG(FLAGS_mixed_precision_solves);  options->max_num_refinement_iterations =      CERES_GET_FLAG(FLAGS_max_num_refinement_iterations);}void SetMinimizerOptions(Solver::Options* options) {  options->max_num_iterations = CERES_GET_FLAG(FLAGS_num_iterations);  options->minimizer_progress_to_stdout = true;  options->num_threads = CERES_GET_FLAG(FLAGS_num_threads);  options->eta = CERES_GET_FLAG(FLAGS_eta);  options->use_nonmonotonic_steps = CERES_GET_FLAG(FLAGS_nonmonotonic_steps);  if (CERES_GET_FLAG(FLAGS_line_search)) {    options->minimizer_type = ceres::LINE_SEARCH;  }  CHECK(StringToTrustRegionStrategyType(      CERES_GET_FLAG(FLAGS_trust_region_strategy),      &options->trust_region_strategy_type));  CHECK(      StringToDoglegType(CERES_GET_FLAG(FLAGS_dogleg), &options->dogleg_type));  options->use_inner_iterations = CERES_GET_FLAG(FLAGS_inner_iterations);}// Solves the FoE problem using Ceres and post-processes it to make sure the// solution stays within [0, 255].void SolveProblem(Problem* problem, PGMImage<double>* solution) {  // These parameters may be experimented with. For example, ceres::DOGLEG tends  // to be faster for 2x2 filters, but gives solutions with slightly higher  // objective function value.  ceres::Solver::Options options;  SetMinimizerOptions(&options);  SetLinearSolver(&options);  options.function_tolerance = 1e-3;  // Enough for denoising.  if (options.linear_solver_type == ceres::CGNR &&      options.preconditioner_type == ceres::SUBSET) {    std::vector<ResidualBlockId> residual_blocks;    problem->GetResidualBlocks(&residual_blocks);    // To use the SUBSET preconditioner we need to provide a list of    // residual blocks (rows of the Jacobian). The denoising problem    // has fairly general sparsity, and there is no apriori reason to    // select one residual block over another, so we will randomly    // subsample the residual blocks with probability subset_fraction.    std::default_random_engine engine;    std::uniform_real_distribution<> distribution(0, 1);  // rage 0 - 1    for (auto residual_block : residual_blocks) {      if (distribution(engine) <= CERES_GET_FLAG(FLAGS_subset_fraction)) {        options.residual_blocks_for_subset_preconditioner.insert(            residual_block);      }    }  }  ceres::Solver::Summary summary;  ceres::Solve(options, problem, &summary);  std::cout << summary.FullReport() << "\n";  // Make the solution stay in [0, 255].  for (int x = 0; x < solution->width(); ++x) {    for (int y = 0; y < solution->height(); ++y) {      *solution->MutablePixel(x, y) =          std::min(255.0, std::max(0.0, solution->Pixel(x, y)));    }  }}}  // namespace}  // namespace examples}  // namespace ceresint main(int argc, char** argv) {  using namespace ceres::examples;  GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);  google::InitGoogleLogging(argv[0]);  if (CERES_GET_FLAG(FLAGS_input).empty()) {    std::cerr << "Please provide an image file name using -input.\n";    return 1;  }  if (CERES_GET_FLAG(FLAGS_foe_file).empty()) {    std::cerr << "Please provide a Fields of Experts file name using -foe_file."                 "\n";    return 1;  }  // Load the Fields of Experts filters from file.  FieldsOfExperts foe;  if (!foe.LoadFromFile(CERES_GET_FLAG(FLAGS_foe_file))) {    std::cerr << "Loading \"" << CERES_GET_FLAG(FLAGS_foe_file)              << "\" failed.\n";    return 2;  }  // Read the images  PGMImage<double> image(CERES_GET_FLAG(FLAGS_input));  if (image.width() == 0) {    std::cerr << "Reading \"" << CERES_GET_FLAG(FLAGS_input) << "\" failed.\n";    return 3;  }  PGMImage<double> solution(image.width(), image.height());  solution.Set(0.0);  ceres::Problem problem;  CreateProblem(foe, image, &problem, &solution);  SolveProblem(&problem, &solution);  if (!CERES_GET_FLAG(FLAGS_output).empty()) {    CHECK(solution.WriteToFile(CERES_GET_FLAG(FLAGS_output)))        << "Writing \"" << CERES_GET_FLAG(FLAGS_output) << "\" failed.";  }  return 0;}
 |