| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include "ceres/compressed_col_sparse_matrix_utils.h"
 
- #include <algorithm>
 
- #include <vector>
 
- #include "ceres/internal/port.h"
 
- #include "glog/logging.h"
 
- namespace ceres {
 
- namespace internal {
 
- using std::vector;
 
- void CompressedColumnScalarMatrixToBlockMatrix(const int* scalar_rows,
 
-                                                const int* scalar_cols,
 
-                                                const vector<int>& row_blocks,
 
-                                                const vector<int>& col_blocks,
 
-                                                vector<int>* block_rows,
 
-                                                vector<int>* block_cols) {
 
-   CHECK(block_rows != nullptr);
 
-   CHECK(block_cols != nullptr);
 
-   block_rows->clear();
 
-   block_cols->clear();
 
-   const int num_row_blocks = row_blocks.size();
 
-   const int num_col_blocks = col_blocks.size();
 
-   vector<int> row_block_starts(num_row_blocks);
 
-   for (int i = 0, cursor = 0; i < num_row_blocks; ++i) {
 
-     row_block_starts[i] = cursor;
 
-     cursor += row_blocks[i];
 
-   }
 
-   // This loop extracts the block sparsity of the scalar sparse matrix
 
-   // It does so by iterating over the columns, but only considering
 
-   // the columns corresponding to the first element of each column
 
-   // block. Within each column, the inner loop iterates over the rows,
 
-   // and detects the presence of a row block by checking for the
 
-   // presence of a non-zero entry corresponding to its first element.
 
-   block_cols->push_back(0);
 
-   int c = 0;
 
-   for (int col_block = 0; col_block < num_col_blocks; ++col_block) {
 
-     int column_size = 0;
 
-     for (int idx = scalar_cols[c]; idx < scalar_cols[c + 1]; ++idx) {
 
-       vector<int>::const_iterator it = std::lower_bound(
 
-           row_block_starts.begin(), row_block_starts.end(), scalar_rows[idx]);
 
-       // Since we are using lower_bound, it will return the row id
 
-       // where the row block starts. For everything but the first row
 
-       // of the block, where these values will be the same, we can
 
-       // skip, as we only need the first row to detect the presence of
 
-       // the block.
 
-       //
 
-       // For rows all but the first row in the last row block,
 
-       // lower_bound will return row_block_starts.end(), but those can
 
-       // be skipped like the rows in other row blocks too.
 
-       if (it == row_block_starts.end() || *it != scalar_rows[idx]) {
 
-         continue;
 
-       }
 
-       block_rows->push_back(it - row_block_starts.begin());
 
-       ++column_size;
 
-     }
 
-     block_cols->push_back(block_cols->back() + column_size);
 
-     c += col_blocks[col_block];
 
-   }
 
- }
 
- void BlockOrderingToScalarOrdering(const vector<int>& blocks,
 
-                                    const vector<int>& block_ordering,
 
-                                    vector<int>* scalar_ordering) {
 
-   CHECK_EQ(blocks.size(), block_ordering.size());
 
-   const int num_blocks = blocks.size();
 
-   // block_starts = [0, block1, block1 + block2 ..]
 
-   vector<int> block_starts(num_blocks);
 
-   for (int i = 0, cursor = 0; i < num_blocks; ++i) {
 
-     block_starts[i] = cursor;
 
-     cursor += blocks[i];
 
-   }
 
-   scalar_ordering->resize(block_starts.back() + blocks.back());
 
-   int cursor = 0;
 
-   for (int i = 0; i < num_blocks; ++i) {
 
-     const int block_id = block_ordering[i];
 
-     const int block_size = blocks[block_id];
 
-     int block_position = block_starts[block_id];
 
-     for (int j = 0; j < block_size; ++j) {
 
-       (*scalar_ordering)[cursor++] = block_position++;
 
-     }
 
-   }
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |