| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2019 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#ifndef CERES_PUBLIC_GRADIENT_PROBLEM_SOLVER_H_#define CERES_PUBLIC_GRADIENT_PROBLEM_SOLVER_H_#include <cmath>#include <string>#include <vector>#include "ceres/internal/disable_warnings.h"#include "ceres/internal/port.h"#include "ceres/iteration_callback.h"#include "ceres/types.h"namespace ceres {class GradientProblem;class CERES_EXPORT GradientProblemSolver { public:  virtual ~GradientProblemSolver();  // The options structure contains, not surprisingly, options that control how  // the solver operates. The defaults should be suitable for a wide range of  // problems; however, better performance is often obtainable with tweaking.  //  // The constants are defined inside types.h  struct CERES_EXPORT Options {    // Returns true if the options struct has a valid    // configuration. Returns false otherwise, and fills in *error    // with a message describing the problem.    bool IsValid(std::string* error) const;    // Minimizer options ----------------------------------------    LineSearchDirectionType line_search_direction_type = LBFGS;    LineSearchType line_search_type = WOLFE;    NonlinearConjugateGradientType nonlinear_conjugate_gradient_type =        FLETCHER_REEVES;    // The LBFGS hessian approximation is a low rank approximation to    // the inverse of the Hessian matrix. The rank of the    // approximation determines (linearly) the space and time    // complexity of using the approximation. Higher the rank, the    // better is the quality of the approximation. The increase in    // quality is however is bounded for a number of reasons.    //    // 1. The method only uses secant information and not actual    // derivatives.    //    // 2. The Hessian approximation is constrained to be positive    // definite.    //    // So increasing this rank to a large number will cost time and    // space complexity without the corresponding increase in solution    // quality. There are no hard and fast rules for choosing the    // maximum rank. The best choice usually requires some problem    // specific experimentation.    //    // For more theoretical and implementation details of the LBFGS    // method, please see:    //    // Nocedal, J. (1980). "Updating Quasi-Newton Matrices with    // Limited Storage". Mathematics of Computation 35 (151): 773-782.    int max_lbfgs_rank = 20;    // As part of the (L)BFGS update step (BFGS) / right-multiply step (L-BFGS),    // the initial inverse Hessian approximation is taken to be the Identity.    // However, Oren showed that using instead I * \gamma, where \gamma is    // chosen to approximate an eigenvalue of the true inverse Hessian can    // result in improved convergence in a wide variety of cases. Setting    // use_approximate_eigenvalue_bfgs_scaling to true enables this scaling.    //    // It is important to note that approximate eigenvalue scaling does not    // always improve convergence, and that it can in fact significantly degrade    // performance for certain classes of problem, which is why it is disabled    // by default.  In particular it can degrade performance when the    // sensitivity of the problem to different parameters varies significantly,    // as in this case a single scalar factor fails to capture this variation    // and detrimentally downscales parts of the jacobian approximation which    // correspond to low-sensitivity parameters. It can also reduce the    // robustness of the solution to errors in the jacobians.    //    // Oren S.S., Self-scaling variable metric (SSVM) algorithms    // Part II: Implementation and experiments, Management Science,    // 20(5), 863-874, 1974.    bool use_approximate_eigenvalue_bfgs_scaling = false;    // Degree of the polynomial used to approximate the objective    // function. Valid values are BISECTION, QUADRATIC and CUBIC.    //    // BISECTION corresponds to pure backtracking search with no    // interpolation.    LineSearchInterpolationType line_search_interpolation_type = CUBIC;    // If during the line search, the step_size falls below this    // value, it is truncated to zero.    double min_line_search_step_size = 1e-9;    // Line search parameters.    // Solving the line search problem exactly is computationally    // prohibitive. Fortunately, line search based optimization    // algorithms can still guarantee convergence if instead of an    // exact solution, the line search algorithm returns a solution    // which decreases the value of the objective function    // sufficiently. More precisely, we are looking for a step_size    // s.t.    //    //   f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size    //    double line_search_sufficient_function_decrease = 1e-4;    // In each iteration of the line search,    //    //  new_step_size >= max_line_search_step_contraction * step_size    //    // Note that by definition, for contraction:    //    //  0 < max_step_contraction < min_step_contraction < 1    //    double max_line_search_step_contraction = 1e-3;    // In each iteration of the line search,    //    //  new_step_size <= min_line_search_step_contraction * step_size    //    // Note that by definition, for contraction:    //    //  0 < max_step_contraction < min_step_contraction < 1    //    double min_line_search_step_contraction = 0.6;    // Maximum number of trial step size iterations during each line search,    // if a step size satisfying the search conditions cannot be found within    // this number of trials, the line search will terminate.    int max_num_line_search_step_size_iterations = 20;    // Maximum number of restarts of the line search direction algorithm before    // terminating the optimization. Restarts of the line search direction    // algorithm occur when the current algorithm fails to produce a new descent    // direction. This typically indicates a numerical failure, or a breakdown    // in the validity of the approximations used.    int max_num_line_search_direction_restarts = 5;    // The strong Wolfe conditions consist of the Armijo sufficient    // decrease condition, and an additional requirement that the    // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe    // conditions) of the gradient along the search direction    // decreases sufficiently. Precisely, this second condition    // is that we seek a step_size s.t.    //    //   |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)|    //    // Where f() is the line search objective and f'() is the derivative    // of f w.r.t step_size (d f / d step_size).    double line_search_sufficient_curvature_decrease = 0.9;    // During the bracketing phase of the Wolfe search, the step size is    // increased until either a point satisfying the Wolfe conditions is    // found, or an upper bound for a bracket containing a point satisfying    // the conditions is found.  Precisely, at each iteration of the    // expansion:    //    //   new_step_size <= max_step_expansion * step_size.    //    // By definition for expansion, max_step_expansion > 1.0.    double max_line_search_step_expansion = 10.0;    // Maximum number of iterations for the minimizer to run for.    int max_num_iterations = 50;    // Maximum time for which the minimizer should run for.    double max_solver_time_in_seconds = 1e9;    // Minimizer terminates when    //    //   (new_cost - old_cost) < function_tolerance * old_cost;    //    double function_tolerance = 1e-6;    // Minimizer terminates when    //    //   max_i |x - Project(Plus(x, -g(x))| < gradient_tolerance    //    // This value should typically be 1e-4 * function_tolerance.    double gradient_tolerance = 1e-10;    // Minimizer terminates when    //    //   |step|_2 <= parameter_tolerance * ( |x|_2 +  parameter_tolerance)    //    double parameter_tolerance = 1e-8;    // Logging options ---------------------------------------------------------    LoggingType logging_type = PER_MINIMIZER_ITERATION;    // By default the Minimizer progress is logged to VLOG(1), which    // is sent to STDERR depending on the vlog level. If this flag is    // set to true, and logging_type is not SILENT, the logging output    // is sent to STDOUT.    bool minimizer_progress_to_stdout = false;    // If true, the user's parameter blocks are updated at the end of    // every Minimizer iteration, otherwise they are updated when the    // Minimizer terminates. This is useful if, for example, the user    // wishes to visualize the state of the optimization every    // iteration.    bool update_state_every_iteration = false;    // Callbacks that are executed at the end of each iteration of the    // Minimizer. An iteration may terminate midway, either due to    // numerical failures or because one of the convergence tests has    // been satisfied. In this case none of the callbacks are    // executed.    // Callbacks are executed in the order that they are specified in    // this vector. By default, parameter blocks are updated only at    // the end of the optimization, i.e when the Minimizer    // terminates. This behaviour is controlled by    // update_state_every_variable. If the user wishes to have access    // to the update parameter blocks when his/her callbacks are    // executed, then set update_state_every_iteration to true.    //    // The solver does NOT take ownership of these pointers.    std::vector<IterationCallback*> callbacks;  };  struct CERES_EXPORT Summary {    // A brief one line description of the state of the solver after    // termination.    std::string BriefReport() const;    // A full multiline description of the state of the solver after    // termination.    std::string FullReport() const;    bool IsSolutionUsable() const;    // Minimizer summary -------------------------------------------------    TerminationType termination_type = FAILURE;    // Reason why the solver terminated.    std::string message = "ceres::GradientProblemSolve was not called.";    // Cost of the problem (value of the objective function) before    // the optimization.    double initial_cost = -1.0;    // Cost of the problem (value of the objective function) after the    // optimization.    double final_cost = -1.0;    // IterationSummary for each minimizer iteration in order.    std::vector<IterationSummary> iterations;    // Number of times the cost (and not the gradient) was evaluated.    int num_cost_evaluations = -1;    // Number of times the gradient (and the cost) were evaluated.    int num_gradient_evaluations = -1;    // Sum total of all time spent inside Ceres when Solve is called.    double total_time_in_seconds = -1.0;    // Time (in seconds) spent evaluating the cost.    double cost_evaluation_time_in_seconds = -1.0;    // Time (in seconds) spent evaluating the gradient.    double gradient_evaluation_time_in_seconds = -1.0;    // Time (in seconds) spent minimizing the interpolating polynomial    // to compute the next candidate step size as part of a line search.    double line_search_polynomial_minimization_time_in_seconds = -1.0;    // Number of parameters in the problem.    int num_parameters = -1;    // Dimension of the tangent space of the problem.    int num_local_parameters = -1;    // Type of line search direction used.    LineSearchDirectionType line_search_direction_type = LBFGS;    // Type of the line search algorithm used.    LineSearchType line_search_type = WOLFE;    //  When performing line search, the degree of the polynomial used    //  to approximate the objective function.    LineSearchInterpolationType line_search_interpolation_type = CUBIC;    // If the line search direction is NONLINEAR_CONJUGATE_GRADIENT,    // then this indicates the particular variant of non-linear    // conjugate gradient used.    NonlinearConjugateGradientType nonlinear_conjugate_gradient_type =        FLETCHER_REEVES;    // If the type of the line search direction is LBFGS, then this    // indicates the rank of the Hessian approximation.    int max_lbfgs_rank = -1;  };  // Once a least squares problem has been built, this function takes  // the problem and optimizes it based on the values of the options  // parameters. Upon return, a detailed summary of the work performed  // by the preprocessor, the non-linear minimizer and the linear  // solver are reported in the summary object.  virtual void Solve(const GradientProblemSolver::Options& options,                     const GradientProblem& problem,                     double* parameters,                     GradientProblemSolver::Summary* summary);};// Helper function which avoids going through the interface.CERES_EXPORT void Solve(const GradientProblemSolver::Options& options,                        const GradientProblem& problem,                        double* parameters,                        GradientProblemSolver::Summary* summary);}  // namespace ceres#include "ceres/internal/reenable_warnings.h"#endif  // CERES_PUBLIC_GRADIENT_PROBLEM_SOLVER_H_
 |