| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2019 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #ifndef CERES_PUBLIC_GRADIENT_PROBLEM_SOLVER_H_
 
- #define CERES_PUBLIC_GRADIENT_PROBLEM_SOLVER_H_
 
- #include <cmath>
 
- #include <string>
 
- #include <vector>
 
- #include "ceres/internal/disable_warnings.h"
 
- #include "ceres/internal/port.h"
 
- #include "ceres/iteration_callback.h"
 
- #include "ceres/types.h"
 
- namespace ceres {
 
- class GradientProblem;
 
- class CERES_EXPORT GradientProblemSolver {
 
-  public:
 
-   virtual ~GradientProblemSolver();
 
-   // The options structure contains, not surprisingly, options that control how
 
-   // the solver operates. The defaults should be suitable for a wide range of
 
-   // problems; however, better performance is often obtainable with tweaking.
 
-   //
 
-   // The constants are defined inside types.h
 
-   struct CERES_EXPORT Options {
 
-     // Returns true if the options struct has a valid
 
-     // configuration. Returns false otherwise, and fills in *error
 
-     // with a message describing the problem.
 
-     bool IsValid(std::string* error) const;
 
-     // Minimizer options ----------------------------------------
 
-     LineSearchDirectionType line_search_direction_type = LBFGS;
 
-     LineSearchType line_search_type = WOLFE;
 
-     NonlinearConjugateGradientType nonlinear_conjugate_gradient_type =
 
-         FLETCHER_REEVES;
 
-     // The LBFGS hessian approximation is a low rank approximation to
 
-     // the inverse of the Hessian matrix. The rank of the
 
-     // approximation determines (linearly) the space and time
 
-     // complexity of using the approximation. Higher the rank, the
 
-     // better is the quality of the approximation. The increase in
 
-     // quality is however is bounded for a number of reasons.
 
-     //
 
-     // 1. The method only uses secant information and not actual
 
-     // derivatives.
 
-     //
 
-     // 2. The Hessian approximation is constrained to be positive
 
-     // definite.
 
-     //
 
-     // So increasing this rank to a large number will cost time and
 
-     // space complexity without the corresponding increase in solution
 
-     // quality. There are no hard and fast rules for choosing the
 
-     // maximum rank. The best choice usually requires some problem
 
-     // specific experimentation.
 
-     //
 
-     // For more theoretical and implementation details of the LBFGS
 
-     // method, please see:
 
-     //
 
-     // Nocedal, J. (1980). "Updating Quasi-Newton Matrices with
 
-     // Limited Storage". Mathematics of Computation 35 (151): 773-782.
 
-     int max_lbfgs_rank = 20;
 
-     // As part of the (L)BFGS update step (BFGS) / right-multiply step (L-BFGS),
 
-     // the initial inverse Hessian approximation is taken to be the Identity.
 
-     // However, Oren showed that using instead I * \gamma, where \gamma is
 
-     // chosen to approximate an eigenvalue of the true inverse Hessian can
 
-     // result in improved convergence in a wide variety of cases. Setting
 
-     // use_approximate_eigenvalue_bfgs_scaling to true enables this scaling.
 
-     //
 
-     // It is important to note that approximate eigenvalue scaling does not
 
-     // always improve convergence, and that it can in fact significantly degrade
 
-     // performance for certain classes of problem, which is why it is disabled
 
-     // by default.  In particular it can degrade performance when the
 
-     // sensitivity of the problem to different parameters varies significantly,
 
-     // as in this case a single scalar factor fails to capture this variation
 
-     // and detrimentally downscales parts of the jacobian approximation which
 
-     // correspond to low-sensitivity parameters. It can also reduce the
 
-     // robustness of the solution to errors in the jacobians.
 
-     //
 
-     // Oren S.S., Self-scaling variable metric (SSVM) algorithms
 
-     // Part II: Implementation and experiments, Management Science,
 
-     // 20(5), 863-874, 1974.
 
-     bool use_approximate_eigenvalue_bfgs_scaling = false;
 
-     // Degree of the polynomial used to approximate the objective
 
-     // function. Valid values are BISECTION, QUADRATIC and CUBIC.
 
-     //
 
-     // BISECTION corresponds to pure backtracking search with no
 
-     // interpolation.
 
-     LineSearchInterpolationType line_search_interpolation_type = CUBIC;
 
-     // If during the line search, the step_size falls below this
 
-     // value, it is truncated to zero.
 
-     double min_line_search_step_size = 1e-9;
 
-     // Line search parameters.
 
-     // Solving the line search problem exactly is computationally
 
-     // prohibitive. Fortunately, line search based optimization
 
-     // algorithms can still guarantee convergence if instead of an
 
-     // exact solution, the line search algorithm returns a solution
 
-     // which decreases the value of the objective function
 
-     // sufficiently. More precisely, we are looking for a step_size
 
-     // s.t.
 
-     //
 
-     //   f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size
 
-     //
 
-     double line_search_sufficient_function_decrease = 1e-4;
 
-     // In each iteration of the line search,
 
-     //
 
-     //  new_step_size >= max_line_search_step_contraction * step_size
 
-     //
 
-     // Note that by definition, for contraction:
 
-     //
 
-     //  0 < max_step_contraction < min_step_contraction < 1
 
-     //
 
-     double max_line_search_step_contraction = 1e-3;
 
-     // In each iteration of the line search,
 
-     //
 
-     //  new_step_size <= min_line_search_step_contraction * step_size
 
-     //
 
-     // Note that by definition, for contraction:
 
-     //
 
-     //  0 < max_step_contraction < min_step_contraction < 1
 
-     //
 
-     double min_line_search_step_contraction = 0.6;
 
-     // Maximum number of trial step size iterations during each line search,
 
-     // if a step size satisfying the search conditions cannot be found within
 
-     // this number of trials, the line search will terminate.
 
-     int max_num_line_search_step_size_iterations = 20;
 
-     // Maximum number of restarts of the line search direction algorithm before
 
-     // terminating the optimization. Restarts of the line search direction
 
-     // algorithm occur when the current algorithm fails to produce a new descent
 
-     // direction. This typically indicates a numerical failure, or a breakdown
 
-     // in the validity of the approximations used.
 
-     int max_num_line_search_direction_restarts = 5;
 
-     // The strong Wolfe conditions consist of the Armijo sufficient
 
-     // decrease condition, and an additional requirement that the
 
-     // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe
 
-     // conditions) of the gradient along the search direction
 
-     // decreases sufficiently. Precisely, this second condition
 
-     // is that we seek a step_size s.t.
 
-     //
 
-     //   |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)|
 
-     //
 
-     // Where f() is the line search objective and f'() is the derivative
 
-     // of f w.r.t step_size (d f / d step_size).
 
-     double line_search_sufficient_curvature_decrease = 0.9;
 
-     // During the bracketing phase of the Wolfe search, the step size is
 
-     // increased until either a point satisfying the Wolfe conditions is
 
-     // found, or an upper bound for a bracket containing a point satisfying
 
-     // the conditions is found.  Precisely, at each iteration of the
 
-     // expansion:
 
-     //
 
-     //   new_step_size <= max_step_expansion * step_size.
 
-     //
 
-     // By definition for expansion, max_step_expansion > 1.0.
 
-     double max_line_search_step_expansion = 10.0;
 
-     // Maximum number of iterations for the minimizer to run for.
 
-     int max_num_iterations = 50;
 
-     // Maximum time for which the minimizer should run for.
 
-     double max_solver_time_in_seconds = 1e9;
 
-     // Minimizer terminates when
 
-     //
 
-     //   (new_cost - old_cost) < function_tolerance * old_cost;
 
-     //
 
-     double function_tolerance = 1e-6;
 
-     // Minimizer terminates when
 
-     //
 
-     //   max_i |x - Project(Plus(x, -g(x))| < gradient_tolerance
 
-     //
 
-     // This value should typically be 1e-4 * function_tolerance.
 
-     double gradient_tolerance = 1e-10;
 
-     // Minimizer terminates when
 
-     //
 
-     //   |step|_2 <= parameter_tolerance * ( |x|_2 +  parameter_tolerance)
 
-     //
 
-     double parameter_tolerance = 1e-8;
 
-     // Logging options ---------------------------------------------------------
 
-     LoggingType logging_type = PER_MINIMIZER_ITERATION;
 
-     // By default the Minimizer progress is logged to VLOG(1), which
 
-     // is sent to STDERR depending on the vlog level. If this flag is
 
-     // set to true, and logging_type is not SILENT, the logging output
 
-     // is sent to STDOUT.
 
-     bool minimizer_progress_to_stdout = false;
 
-     // If true, the user's parameter blocks are updated at the end of
 
-     // every Minimizer iteration, otherwise they are updated when the
 
-     // Minimizer terminates. This is useful if, for example, the user
 
-     // wishes to visualize the state of the optimization every
 
-     // iteration.
 
-     bool update_state_every_iteration = false;
 
-     // Callbacks that are executed at the end of each iteration of the
 
-     // Minimizer. An iteration may terminate midway, either due to
 
-     // numerical failures or because one of the convergence tests has
 
-     // been satisfied. In this case none of the callbacks are
 
-     // executed.
 
-     // Callbacks are executed in the order that they are specified in
 
-     // this vector. By default, parameter blocks are updated only at
 
-     // the end of the optimization, i.e when the Minimizer
 
-     // terminates. This behaviour is controlled by
 
-     // update_state_every_variable. If the user wishes to have access
 
-     // to the update parameter blocks when his/her callbacks are
 
-     // executed, then set update_state_every_iteration to true.
 
-     //
 
-     // The solver does NOT take ownership of these pointers.
 
-     std::vector<IterationCallback*> callbacks;
 
-   };
 
-   struct CERES_EXPORT Summary {
 
-     // A brief one line description of the state of the solver after
 
-     // termination.
 
-     std::string BriefReport() const;
 
-     // A full multiline description of the state of the solver after
 
-     // termination.
 
-     std::string FullReport() const;
 
-     bool IsSolutionUsable() const;
 
-     // Minimizer summary -------------------------------------------------
 
-     TerminationType termination_type = FAILURE;
 
-     // Reason why the solver terminated.
 
-     std::string message = "ceres::GradientProblemSolve was not called.";
 
-     // Cost of the problem (value of the objective function) before
 
-     // the optimization.
 
-     double initial_cost = -1.0;
 
-     // Cost of the problem (value of the objective function) after the
 
-     // optimization.
 
-     double final_cost = -1.0;
 
-     // IterationSummary for each minimizer iteration in order.
 
-     std::vector<IterationSummary> iterations;
 
-     // Number of times the cost (and not the gradient) was evaluated.
 
-     int num_cost_evaluations = -1;
 
-     // Number of times the gradient (and the cost) were evaluated.
 
-     int num_gradient_evaluations = -1;
 
-     // Sum total of all time spent inside Ceres when Solve is called.
 
-     double total_time_in_seconds = -1.0;
 
-     // Time (in seconds) spent evaluating the cost.
 
-     double cost_evaluation_time_in_seconds = -1.0;
 
-     // Time (in seconds) spent evaluating the gradient.
 
-     double gradient_evaluation_time_in_seconds = -1.0;
 
-     // Time (in seconds) spent minimizing the interpolating polynomial
 
-     // to compute the next candidate step size as part of a line search.
 
-     double line_search_polynomial_minimization_time_in_seconds = -1.0;
 
-     // Number of parameters in the problem.
 
-     int num_parameters = -1;
 
-     // Dimension of the tangent space of the problem.
 
-     int num_local_parameters = -1;
 
-     // Type of line search direction used.
 
-     LineSearchDirectionType line_search_direction_type = LBFGS;
 
-     // Type of the line search algorithm used.
 
-     LineSearchType line_search_type = WOLFE;
 
-     //  When performing line search, the degree of the polynomial used
 
-     //  to approximate the objective function.
 
-     LineSearchInterpolationType line_search_interpolation_type = CUBIC;
 
-     // If the line search direction is NONLINEAR_CONJUGATE_GRADIENT,
 
-     // then this indicates the particular variant of non-linear
 
-     // conjugate gradient used.
 
-     NonlinearConjugateGradientType nonlinear_conjugate_gradient_type =
 
-         FLETCHER_REEVES;
 
-     // If the type of the line search direction is LBFGS, then this
 
-     // indicates the rank of the Hessian approximation.
 
-     int max_lbfgs_rank = -1;
 
-   };
 
-   // Once a least squares problem has been built, this function takes
 
-   // the problem and optimizes it based on the values of the options
 
-   // parameters. Upon return, a detailed summary of the work performed
 
-   // by the preprocessor, the non-linear minimizer and the linear
 
-   // solver are reported in the summary object.
 
-   virtual void Solve(const GradientProblemSolver::Options& options,
 
-                      const GradientProblem& problem,
 
-                      double* parameters,
 
-                      GradientProblemSolver::Summary* summary);
 
- };
 
- // Helper function which avoids going through the interface.
 
- CERES_EXPORT void Solve(const GradientProblemSolver::Options& options,
 
-                         const GradientProblem& problem,
 
-                         double* parameters,
 
-                         GradientProblemSolver::Summary* summary);
 
- }  // namespace ceres
 
- #include "ceres/internal/reenable_warnings.h"
 
- #endif  // CERES_PUBLIC_GRADIENT_PROBLEM_SOLVER_H_
 
 
  |