| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//         tbennun@gmail.com (Tal Ben-Nun)#include "ceres/numeric_diff_test_utils.h"#include <algorithm>#include <cmath>#include "ceres/cost_function.h"#include "ceres/test_util.h"#include "ceres/types.h"#include "gtest/gtest.h"namespace ceres {namespace internal {bool EasyFunctor::operator()(const double* x1,                             const double* x2,                             double* residuals) const {  residuals[0] = residuals[1] = residuals[2] = 0;  for (int i = 0; i < 5; ++i) {    residuals[0] += x1[i] * x2[i];    residuals[2] += x2[i] * x2[i];  }  residuals[1] = residuals[0] * residuals[0];  return true;}void EasyFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(    const CostFunction& cost_function,    NumericDiffMethodType method) const {  // The x1[0] is made deliberately small to test the performance near  // zero.  double x1[] = { 1e-64, 2.0, 3.0, 4.0, 5.0 };  double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 };  double *parameters[] = { &x1[0], &x2[0] };  double dydx1[15];  // 3 x 5, row major.  double dydx2[15];  // 3 x 5, row major.  double *jacobians[2] = { &dydx1[0], &dydx2[0] };  double residuals[3] = {-1e-100, -2e-100, -3e-100 };  ASSERT_TRUE(cost_function.Evaluate(¶meters[0],                                     &residuals[0],                                     &jacobians[0]));  double expected_residuals[3];  EasyFunctor functor;  functor(x1, x2, expected_residuals);  EXPECT_EQ(expected_residuals[0], residuals[0]);  EXPECT_EQ(expected_residuals[1], residuals[1]);  EXPECT_EQ(expected_residuals[2], residuals[2]);  double tolerance = 0.0;  switch (method) {    default:    case CENTRAL:      tolerance = 3e-9;      break;    case FORWARD:      tolerance = 2e-5;      break;    case RIDDERS:      tolerance = 1e-13;      break;  }  for (int i = 0; i < 5; ++i) {    ExpectClose(x2[i],                    dydx1[5 * 0 + i], tolerance);  // y1    ExpectClose(x1[i],                    dydx2[5 * 0 + i], tolerance);    ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], tolerance);  // y2    ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], tolerance);    ExpectClose(0.0,                      dydx1[5 * 2 + i], tolerance);  // y3    ExpectClose(2 * x2[i],                dydx2[5 * 2 + i], tolerance);  }}bool TranscendentalFunctor::operator()(const double* x1,                                       const double* x2,                                       double* residuals) const {  double x1x2 = 0;  for (int i = 0; i < 5; ++i) {    x1x2 += x1[i] * x2[i];  }  residuals[0] = sin(x1x2);  residuals[1] = exp(-x1x2 / 10);  return true;}void TranscendentalFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(    const CostFunction& cost_function,    NumericDiffMethodType method) const {  struct TestParameterBlocks {    double x1[5];    double x2[5];  };  std::vector<TestParameterBlocks> kTests =  {    { { 1.0, 2.0, 3.0, 4.0, 5.0 },  // No zeros.      { 9.0, 9.0, 5.0, 5.0, 1.0 },    },    { { 0.0, 2.0, 3.0, 0.0, 5.0 },  // Some zeros x1.      { 9.0, 9.0, 5.0, 5.0, 1.0 },    },    { { 1.0, 2.0, 3.0, 1.0, 5.0 },  // Some zeros x2.      { 0.0, 9.0, 0.0, 5.0, 0.0 },    },    { { 0.0, 0.0, 0.0, 0.0, 0.0 },  // All zeros x1.      { 9.0, 9.0, 5.0, 5.0, 1.0 },    },    { { 1.0, 2.0, 3.0, 4.0, 5.0 },  // All zeros x2.      { 0.0, 0.0, 0.0, 0.0, 0.0 },    },    { { 0.0, 0.0, 0.0, 0.0, 0.0 },  // All zeros.      { 0.0, 0.0, 0.0, 0.0, 0.0 },    },  };  for (int k = 0; k < kTests.size(); ++k) {    double *x1 = &(kTests[k].x1[0]);    double *x2 = &(kTests[k].x2[0]);    double *parameters[] = { x1, x2 };    double dydx1[10];    double dydx2[10];    double *jacobians[2] = { &dydx1[0], &dydx2[0] };    double residuals[2];    ASSERT_TRUE(cost_function.Evaluate(¶meters[0],                                       &residuals[0],                                       &jacobians[0]));    double x1x2 = 0;    for (int i = 0; i < 5; ++i) {      x1x2 += x1[i] * x2[i];    }    double tolerance = 0.0;    switch (method) {      default:      case CENTRAL:        tolerance = 2e-7;        break;      case FORWARD:        tolerance = 2e-5;        break;      case RIDDERS:        tolerance = 3e-12;        break;    }    for (int i = 0; i < 5; ++i) {      ExpectClose( x2[i] * cos(x1x2),              dydx1[5 * 0 + i], tolerance);      ExpectClose( x1[i] * cos(x1x2),              dydx2[5 * 0 + i], tolerance);      ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], tolerance);      ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], tolerance);    }  }}bool ExponentialFunctor::operator()(const double* x1,                                    double* residuals) const {  residuals[0] = exp(x1[0]);  return true;}void ExponentialFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(    const CostFunction& cost_function) const {  // Evaluating the functor at specific points for testing.  std::vector<double> kTests = { 1.0, 2.0, 3.0, 4.0, 5.0 };  // Minimal tolerance w.r.t. the cost function and the tests.  const double kTolerance = 2e-14;  for (int k = 0; k < kTests.size(); ++k) {    double *parameters[] = { &kTests[k] };    double dydx;    double *jacobians[1] = { &dydx };    double residual;    ASSERT_TRUE(cost_function.Evaluate(¶meters[0],                                       &residual,                                       &jacobians[0]));    double expected_result = exp(kTests[k]);    // Expect residual to be close to exp(x).    ExpectClose(residual, expected_result, kTolerance);    // Check evaluated differences. dydx should also be close to exp(x).    ExpectClose(dydx, expected_result, kTolerance);  }}bool RandomizedFunctor::operator()(const double* x1,                                   double* residuals) const {  double random_value = static_cast<double>(rand()) /      static_cast<double>(RAND_MAX);  // Normalize noise to [-factor, factor].  random_value *= 2.0;  random_value -= 1.0;  random_value *= noise_factor_;  residuals[0] = x1[0] * x1[0] + random_value;  return true;}void RandomizedFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect(    const CostFunction& cost_function) const {  std::vector<double> kTests = { 0.0, 1.0, 3.0, 4.0, 50.0 };  const double kTolerance = 2e-4;  // Initialize random number generator with given seed.  srand(random_seed_);  for (int k = 0; k < kTests.size(); ++k) {    double *parameters[] = { &kTests[k] };    double dydx;    double *jacobians[1] = { &dydx };    double residual;    ASSERT_TRUE(cost_function.Evaluate(¶meters[0],                                       &residual,                                       &jacobians[0]));    // Expect residual to be close to x^2 w.r.t. noise factor.    ExpectClose(residual, kTests[k] * kTests[k], noise_factor_);    // Check evaluated differences. (dy/dx = ~2x)    ExpectClose(dydx, 2 * kTests[k], kTolerance);  }}}  // namespace internal}  // namespace ceres
 |