| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)// This include must come before any #ifndef check on Ceres compile options.#include "ceres/internal/port.h"#ifndef CERES_NO_SUITESPARSE#include "ceres/suitesparse.h"#include <vector>#include "ceres/compressed_col_sparse_matrix_utils.h"#include "ceres/compressed_row_sparse_matrix.h"#include "ceres/linear_solver.h"#include "ceres/triplet_sparse_matrix.h"#include "cholmod.h"namespace ceres {namespace internal {using std::string;using std::vector;SuiteSparse::SuiteSparse() { cholmod_start(&cc_); }SuiteSparse::~SuiteSparse() { cholmod_finish(&cc_); }cholmod_sparse* SuiteSparse::CreateSparseMatrix(TripletSparseMatrix* A) {  cholmod_triplet triplet;  triplet.nrow = A->num_rows();  triplet.ncol = A->num_cols();  triplet.nzmax = A->max_num_nonzeros();  triplet.nnz = A->num_nonzeros();  triplet.i = reinterpret_cast<void*>(A->mutable_rows());  triplet.j = reinterpret_cast<void*>(A->mutable_cols());  triplet.x = reinterpret_cast<void*>(A->mutable_values());  triplet.stype = 0;  // Matrix is not symmetric.  triplet.itype = CHOLMOD_INT;  triplet.xtype = CHOLMOD_REAL;  triplet.dtype = CHOLMOD_DOUBLE;  return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_);}cholmod_sparse* SuiteSparse::CreateSparseMatrixTranspose(    TripletSparseMatrix* A) {  cholmod_triplet triplet;  triplet.ncol = A->num_rows();  // swap row and columns  triplet.nrow = A->num_cols();  triplet.nzmax = A->max_num_nonzeros();  triplet.nnz = A->num_nonzeros();  // swap rows and columns  triplet.j = reinterpret_cast<void*>(A->mutable_rows());  triplet.i = reinterpret_cast<void*>(A->mutable_cols());  triplet.x = reinterpret_cast<void*>(A->mutable_values());  triplet.stype = 0;  // Matrix is not symmetric.  triplet.itype = CHOLMOD_INT;  triplet.xtype = CHOLMOD_REAL;  triplet.dtype = CHOLMOD_DOUBLE;  return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_);}cholmod_sparse SuiteSparse::CreateSparseMatrixTransposeView(    CompressedRowSparseMatrix* A) {  cholmod_sparse m;  m.nrow = A->num_cols();  m.ncol = A->num_rows();  m.nzmax = A->num_nonzeros();  m.nz = nullptr;  m.p = reinterpret_cast<void*>(A->mutable_rows());  m.i = reinterpret_cast<void*>(A->mutable_cols());  m.x = reinterpret_cast<void*>(A->mutable_values());  m.z = nullptr;  if (A->storage_type() == CompressedRowSparseMatrix::LOWER_TRIANGULAR) {    m.stype = 1;  } else if (A->storage_type() == CompressedRowSparseMatrix::UPPER_TRIANGULAR) {    m.stype = -1;  } else {    m.stype = 0;  }  m.itype = CHOLMOD_INT;  m.xtype = CHOLMOD_REAL;  m.dtype = CHOLMOD_DOUBLE;  m.sorted = 1;  m.packed = 1;  return m;}cholmod_dense SuiteSparse::CreateDenseVectorView(const double* x, int size) {  cholmod_dense v;  v.nrow = size;  v.ncol = 1;  v.nzmax = size;  v.d = size;  v.x = const_cast<void*>(reinterpret_cast<const void*>(x));  v.xtype = CHOLMOD_REAL;  v.dtype = CHOLMOD_DOUBLE;  return v;}cholmod_dense* SuiteSparse::CreateDenseVector(const double* x,                                              int in_size,                                              int out_size) {  CHECK_LE(in_size, out_size);  cholmod_dense* v = cholmod_zeros(out_size, 1, CHOLMOD_REAL, &cc_);  if (x != nullptr) {    memcpy(v->x, x, in_size * sizeof(*x));  }  return v;}cholmod_factor* SuiteSparse::AnalyzeCholesky(cholmod_sparse* A,                                             string* message) {  // Cholmod can try multiple re-ordering strategies to find a fill  // reducing ordering. Here we just tell it use AMD with automatic  // matrix dependence choice of supernodal versus simplicial  // factorization.  cc_.nmethods = 1;  cc_.method[0].ordering = CHOLMOD_AMD;  cc_.supernodal = CHOLMOD_AUTO;  cholmod_factor* factor = cholmod_analyze(A, &cc_);  if (VLOG_IS_ON(2)) {    cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);  }  if (cc_.status != CHOLMOD_OK) {    *message =        StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);    return nullptr;  }  CHECK(factor != nullptr);  return factor;}cholmod_factor* SuiteSparse::BlockAnalyzeCholesky(cholmod_sparse* A,                                                  const vector<int>& row_blocks,                                                  const vector<int>& col_blocks,                                                  string* message) {  vector<int> ordering;  if (!BlockAMDOrdering(A, row_blocks, col_blocks, &ordering)) {    return nullptr;  }  return AnalyzeCholeskyWithUserOrdering(A, ordering, message);}cholmod_factor* SuiteSparse::AnalyzeCholeskyWithUserOrdering(    cholmod_sparse* A, const vector<int>& ordering, string* message) {  CHECK_EQ(ordering.size(), A->nrow);  cc_.nmethods = 1;  cc_.method[0].ordering = CHOLMOD_GIVEN;  cholmod_factor* factor =      cholmod_analyze_p(A, const_cast<int*>(&ordering[0]), nullptr, 0, &cc_);  if (VLOG_IS_ON(2)) {    cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);  }  if (cc_.status != CHOLMOD_OK) {    *message =        StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);    return nullptr;  }  CHECK(factor != nullptr);  return factor;}cholmod_factor* SuiteSparse::AnalyzeCholeskyWithNaturalOrdering(    cholmod_sparse* A, string* message) {  cc_.nmethods = 1;  cc_.method[0].ordering = CHOLMOD_NATURAL;  cc_.postorder = 0;  cholmod_factor* factor = cholmod_analyze(A, &cc_);  if (VLOG_IS_ON(2)) {    cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);  }  if (cc_.status != CHOLMOD_OK) {    *message =        StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);    return nullptr;  }  CHECK(factor != nullptr);  return factor;}bool SuiteSparse::BlockAMDOrdering(const cholmod_sparse* A,                                   const vector<int>& row_blocks,                                   const vector<int>& col_blocks,                                   vector<int>* ordering) {  const int num_row_blocks = row_blocks.size();  const int num_col_blocks = col_blocks.size();  // Arrays storing the compressed column structure of the matrix  // incoding the block sparsity of A.  vector<int> block_cols;  vector<int> block_rows;  CompressedColumnScalarMatrixToBlockMatrix(reinterpret_cast<const int*>(A->i),                                            reinterpret_cast<const int*>(A->p),                                            row_blocks,                                            col_blocks,                                            &block_rows,                                            &block_cols);  cholmod_sparse_struct block_matrix;  block_matrix.nrow = num_row_blocks;  block_matrix.ncol = num_col_blocks;  block_matrix.nzmax = block_rows.size();  block_matrix.p = reinterpret_cast<void*>(&block_cols[0]);  block_matrix.i = reinterpret_cast<void*>(&block_rows[0]);  block_matrix.x = nullptr;  block_matrix.stype = A->stype;  block_matrix.itype = CHOLMOD_INT;  block_matrix.xtype = CHOLMOD_PATTERN;  block_matrix.dtype = CHOLMOD_DOUBLE;  block_matrix.sorted = 1;  block_matrix.packed = 1;  vector<int> block_ordering(num_row_blocks);  if (!cholmod_amd(&block_matrix, nullptr, 0, &block_ordering[0], &cc_)) {    return false;  }  BlockOrderingToScalarOrdering(row_blocks, block_ordering, ordering);  return true;}LinearSolverTerminationType SuiteSparse::Cholesky(cholmod_sparse* A,                                                  cholmod_factor* L,                                                  string* message) {  CHECK(A != nullptr);  CHECK(L != nullptr);  // Save the current print level and silence CHOLMOD, otherwise  // CHOLMOD is prone to dumping stuff to stderr, which can be  // distracting when the error (matrix is indefinite) is not a fatal  // failure.  const int old_print_level = cc_.print;  cc_.print = 0;  cc_.quick_return_if_not_posdef = 1;  int cholmod_status = cholmod_factorize(A, L, &cc_);  cc_.print = old_print_level;  switch (cc_.status) {    case CHOLMOD_NOT_INSTALLED:      *message = "CHOLMOD failure: Method not installed.";      return LINEAR_SOLVER_FATAL_ERROR;    case CHOLMOD_OUT_OF_MEMORY:      *message = "CHOLMOD failure: Out of memory.";      return LINEAR_SOLVER_FATAL_ERROR;    case CHOLMOD_TOO_LARGE:      *message = "CHOLMOD failure: Integer overflow occurred.";      return LINEAR_SOLVER_FATAL_ERROR;    case CHOLMOD_INVALID:      *message = "CHOLMOD failure: Invalid input.";      return LINEAR_SOLVER_FATAL_ERROR;    case CHOLMOD_NOT_POSDEF:      *message = "CHOLMOD warning: Matrix not positive definite.";      return LINEAR_SOLVER_FAILURE;    case CHOLMOD_DSMALL:      *message =          "CHOLMOD warning: D for LDL' or diag(L) or "          "LL' has tiny absolute value.";      return LINEAR_SOLVER_FAILURE;    case CHOLMOD_OK:      if (cholmod_status != 0) {        return LINEAR_SOLVER_SUCCESS;      }      *message =          "CHOLMOD failure: cholmod_factorize returned false "          "but cholmod_common::status is CHOLMOD_OK."          "Please report this to ceres-solver@googlegroups.com.";      return LINEAR_SOLVER_FATAL_ERROR;    default:      *message = StringPrintf(          "Unknown cholmod return code: %d. "          "Please report this to ceres-solver@googlegroups.com.",          cc_.status);      return LINEAR_SOLVER_FATAL_ERROR;  }  return LINEAR_SOLVER_FATAL_ERROR;}cholmod_dense* SuiteSparse::Solve(cholmod_factor* L,                                  cholmod_dense* b,                                  string* message) {  if (cc_.status != CHOLMOD_OK) {    *message = "cholmod_solve failed. CHOLMOD status is not CHOLMOD_OK";    return nullptr;  }  return cholmod_solve(CHOLMOD_A, L, b, &cc_);}bool SuiteSparse::ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix,                                                   int* ordering) {  return cholmod_amd(matrix, nullptr, 0, ordering, &cc_);}bool SuiteSparse::ConstrainedApproximateMinimumDegreeOrdering(    cholmod_sparse* matrix, int* constraints, int* ordering) {#ifndef CERES_NO_CAMD  return cholmod_camd(matrix, nullptr, 0, constraints, ordering, &cc_);#else  LOG(FATAL) << "Congratulations you have found a bug in Ceres."             << "Ceres Solver was compiled with SuiteSparse "             << "version 4.1.0 or less. Calling this function "             << "in that case is a bug. Please contact the"             << "the Ceres Solver developers.";  return false;#endif}std::unique_ptr<SparseCholesky> SuiteSparseCholesky::Create(    const OrderingType ordering_type) {  return std::unique_ptr<SparseCholesky>(new SuiteSparseCholesky(ordering_type));}SuiteSparseCholesky::SuiteSparseCholesky(const OrderingType ordering_type)    : ordering_type_(ordering_type), factor_(nullptr) {}SuiteSparseCholesky::~SuiteSparseCholesky() {  if (factor_ != nullptr) {    ss_.Free(factor_);  }}LinearSolverTerminationType SuiteSparseCholesky::Factorize(    CompressedRowSparseMatrix* lhs, string* message) {  if (lhs == nullptr) {    *message = "Failure: Input lhs is NULL.";    return LINEAR_SOLVER_FATAL_ERROR;  }  cholmod_sparse cholmod_lhs = ss_.CreateSparseMatrixTransposeView(lhs);  if (factor_ == nullptr) {    if (ordering_type_ == NATURAL) {      factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(&cholmod_lhs, message);    } else {      if (!lhs->col_blocks().empty() && !(lhs->row_blocks().empty())) {        factor_ = ss_.BlockAnalyzeCholesky(            &cholmod_lhs, lhs->col_blocks(), lhs->row_blocks(), message);      } else {        factor_ = ss_.AnalyzeCholesky(&cholmod_lhs, message);      }    }    if (factor_ == nullptr) {      return LINEAR_SOLVER_FATAL_ERROR;    }  }  return ss_.Cholesky(&cholmod_lhs, factor_, message);}CompressedRowSparseMatrix::StorageType SuiteSparseCholesky::StorageType()    const {  return ((ordering_type_ == NATURAL)              ? CompressedRowSparseMatrix::UPPER_TRIANGULAR              : CompressedRowSparseMatrix::LOWER_TRIANGULAR);}LinearSolverTerminationType SuiteSparseCholesky::Solve(const double* rhs,                                                       double* solution,                                                       string* message) {  // Error checking  if (factor_ == nullptr) {    *message = "Solve called without a call to Factorize first.";    return LINEAR_SOLVER_FATAL_ERROR;  }  const int num_cols = factor_->n;  cholmod_dense cholmod_rhs = ss_.CreateDenseVectorView(rhs, num_cols);  cholmod_dense* cholmod_dense_solution =      ss_.Solve(factor_, &cholmod_rhs, message);  if (cholmod_dense_solution == nullptr) {    return LINEAR_SOLVER_FAILURE;  }  memcpy(solution, cholmod_dense_solution->x, num_cols * sizeof(*solution));  ss_.Free(cholmod_dense_solution);  return LINEAR_SOLVER_SUCCESS;}}  // namespace internal}  // namespace ceres#endif  // CERES_NO_SUITESPARSE
 |