| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- // This include must come before any #ifndef check on Ceres compile options.
 
- #include "ceres/internal/port.h"
 
- #ifndef CERES_NO_SUITESPARSE
 
- #include "ceres/suitesparse.h"
 
- #include <vector>
 
- #include "ceres/compressed_col_sparse_matrix_utils.h"
 
- #include "ceres/compressed_row_sparse_matrix.h"
 
- #include "ceres/linear_solver.h"
 
- #include "ceres/triplet_sparse_matrix.h"
 
- #include "cholmod.h"
 
- namespace ceres {
 
- namespace internal {
 
- using std::string;
 
- using std::vector;
 
- SuiteSparse::SuiteSparse() { cholmod_start(&cc_); }
 
- SuiteSparse::~SuiteSparse() { cholmod_finish(&cc_); }
 
- cholmod_sparse* SuiteSparse::CreateSparseMatrix(TripletSparseMatrix* A) {
 
-   cholmod_triplet triplet;
 
-   triplet.nrow = A->num_rows();
 
-   triplet.ncol = A->num_cols();
 
-   triplet.nzmax = A->max_num_nonzeros();
 
-   triplet.nnz = A->num_nonzeros();
 
-   triplet.i = reinterpret_cast<void*>(A->mutable_rows());
 
-   triplet.j = reinterpret_cast<void*>(A->mutable_cols());
 
-   triplet.x = reinterpret_cast<void*>(A->mutable_values());
 
-   triplet.stype = 0;  // Matrix is not symmetric.
 
-   triplet.itype = CHOLMOD_INT;
 
-   triplet.xtype = CHOLMOD_REAL;
 
-   triplet.dtype = CHOLMOD_DOUBLE;
 
-   return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_);
 
- }
 
- cholmod_sparse* SuiteSparse::CreateSparseMatrixTranspose(
 
-     TripletSparseMatrix* A) {
 
-   cholmod_triplet triplet;
 
-   triplet.ncol = A->num_rows();  // swap row and columns
 
-   triplet.nrow = A->num_cols();
 
-   triplet.nzmax = A->max_num_nonzeros();
 
-   triplet.nnz = A->num_nonzeros();
 
-   // swap rows and columns
 
-   triplet.j = reinterpret_cast<void*>(A->mutable_rows());
 
-   triplet.i = reinterpret_cast<void*>(A->mutable_cols());
 
-   triplet.x = reinterpret_cast<void*>(A->mutable_values());
 
-   triplet.stype = 0;  // Matrix is not symmetric.
 
-   triplet.itype = CHOLMOD_INT;
 
-   triplet.xtype = CHOLMOD_REAL;
 
-   triplet.dtype = CHOLMOD_DOUBLE;
 
-   return cholmod_triplet_to_sparse(&triplet, triplet.nnz, &cc_);
 
- }
 
- cholmod_sparse SuiteSparse::CreateSparseMatrixTransposeView(
 
-     CompressedRowSparseMatrix* A) {
 
-   cholmod_sparse m;
 
-   m.nrow = A->num_cols();
 
-   m.ncol = A->num_rows();
 
-   m.nzmax = A->num_nonzeros();
 
-   m.nz = nullptr;
 
-   m.p = reinterpret_cast<void*>(A->mutable_rows());
 
-   m.i = reinterpret_cast<void*>(A->mutable_cols());
 
-   m.x = reinterpret_cast<void*>(A->mutable_values());
 
-   m.z = nullptr;
 
-   if (A->storage_type() == CompressedRowSparseMatrix::LOWER_TRIANGULAR) {
 
-     m.stype = 1;
 
-   } else if (A->storage_type() == CompressedRowSparseMatrix::UPPER_TRIANGULAR) {
 
-     m.stype = -1;
 
-   } else {
 
-     m.stype = 0;
 
-   }
 
-   m.itype = CHOLMOD_INT;
 
-   m.xtype = CHOLMOD_REAL;
 
-   m.dtype = CHOLMOD_DOUBLE;
 
-   m.sorted = 1;
 
-   m.packed = 1;
 
-   return m;
 
- }
 
- cholmod_dense SuiteSparse::CreateDenseVectorView(const double* x, int size) {
 
-   cholmod_dense v;
 
-   v.nrow = size;
 
-   v.ncol = 1;
 
-   v.nzmax = size;
 
-   v.d = size;
 
-   v.x = const_cast<void*>(reinterpret_cast<const void*>(x));
 
-   v.xtype = CHOLMOD_REAL;
 
-   v.dtype = CHOLMOD_DOUBLE;
 
-   return v;
 
- }
 
- cholmod_dense* SuiteSparse::CreateDenseVector(const double* x,
 
-                                               int in_size,
 
-                                               int out_size) {
 
-   CHECK_LE(in_size, out_size);
 
-   cholmod_dense* v = cholmod_zeros(out_size, 1, CHOLMOD_REAL, &cc_);
 
-   if (x != nullptr) {
 
-     memcpy(v->x, x, in_size * sizeof(*x));
 
-   }
 
-   return v;
 
- }
 
- cholmod_factor* SuiteSparse::AnalyzeCholesky(cholmod_sparse* A,
 
-                                              string* message) {
 
-   // Cholmod can try multiple re-ordering strategies to find a fill
 
-   // reducing ordering. Here we just tell it use AMD with automatic
 
-   // matrix dependence choice of supernodal versus simplicial
 
-   // factorization.
 
-   cc_.nmethods = 1;
 
-   cc_.method[0].ordering = CHOLMOD_AMD;
 
-   cc_.supernodal = CHOLMOD_AUTO;
 
-   cholmod_factor* factor = cholmod_analyze(A, &cc_);
 
-   if (VLOG_IS_ON(2)) {
 
-     cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);
 
-   }
 
-   if (cc_.status != CHOLMOD_OK) {
 
-     *message =
 
-         StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
 
-     return nullptr;
 
-   }
 
-   CHECK(factor != nullptr);
 
-   return factor;
 
- }
 
- cholmod_factor* SuiteSparse::BlockAnalyzeCholesky(cholmod_sparse* A,
 
-                                                   const vector<int>& row_blocks,
 
-                                                   const vector<int>& col_blocks,
 
-                                                   string* message) {
 
-   vector<int> ordering;
 
-   if (!BlockAMDOrdering(A, row_blocks, col_blocks, &ordering)) {
 
-     return nullptr;
 
-   }
 
-   return AnalyzeCholeskyWithUserOrdering(A, ordering, message);
 
- }
 
- cholmod_factor* SuiteSparse::AnalyzeCholeskyWithUserOrdering(
 
-     cholmod_sparse* A, const vector<int>& ordering, string* message) {
 
-   CHECK_EQ(ordering.size(), A->nrow);
 
-   cc_.nmethods = 1;
 
-   cc_.method[0].ordering = CHOLMOD_GIVEN;
 
-   cholmod_factor* factor =
 
-       cholmod_analyze_p(A, const_cast<int*>(&ordering[0]), nullptr, 0, &cc_);
 
-   if (VLOG_IS_ON(2)) {
 
-     cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);
 
-   }
 
-   if (cc_.status != CHOLMOD_OK) {
 
-     *message =
 
-         StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
 
-     return nullptr;
 
-   }
 
-   CHECK(factor != nullptr);
 
-   return factor;
 
- }
 
- cholmod_factor* SuiteSparse::AnalyzeCholeskyWithNaturalOrdering(
 
-     cholmod_sparse* A, string* message) {
 
-   cc_.nmethods = 1;
 
-   cc_.method[0].ordering = CHOLMOD_NATURAL;
 
-   cc_.postorder = 0;
 
-   cholmod_factor* factor = cholmod_analyze(A, &cc_);
 
-   if (VLOG_IS_ON(2)) {
 
-     cholmod_print_common(const_cast<char*>("Symbolic Analysis"), &cc_);
 
-   }
 
-   if (cc_.status != CHOLMOD_OK) {
 
-     *message =
 
-         StringPrintf("cholmod_analyze failed. error code: %d", cc_.status);
 
-     return nullptr;
 
-   }
 
-   CHECK(factor != nullptr);
 
-   return factor;
 
- }
 
- bool SuiteSparse::BlockAMDOrdering(const cholmod_sparse* A,
 
-                                    const vector<int>& row_blocks,
 
-                                    const vector<int>& col_blocks,
 
-                                    vector<int>* ordering) {
 
-   const int num_row_blocks = row_blocks.size();
 
-   const int num_col_blocks = col_blocks.size();
 
-   // Arrays storing the compressed column structure of the matrix
 
-   // incoding the block sparsity of A.
 
-   vector<int> block_cols;
 
-   vector<int> block_rows;
 
-   CompressedColumnScalarMatrixToBlockMatrix(reinterpret_cast<const int*>(A->i),
 
-                                             reinterpret_cast<const int*>(A->p),
 
-                                             row_blocks,
 
-                                             col_blocks,
 
-                                             &block_rows,
 
-                                             &block_cols);
 
-   cholmod_sparse_struct block_matrix;
 
-   block_matrix.nrow = num_row_blocks;
 
-   block_matrix.ncol = num_col_blocks;
 
-   block_matrix.nzmax = block_rows.size();
 
-   block_matrix.p = reinterpret_cast<void*>(&block_cols[0]);
 
-   block_matrix.i = reinterpret_cast<void*>(&block_rows[0]);
 
-   block_matrix.x = nullptr;
 
-   block_matrix.stype = A->stype;
 
-   block_matrix.itype = CHOLMOD_INT;
 
-   block_matrix.xtype = CHOLMOD_PATTERN;
 
-   block_matrix.dtype = CHOLMOD_DOUBLE;
 
-   block_matrix.sorted = 1;
 
-   block_matrix.packed = 1;
 
-   vector<int> block_ordering(num_row_blocks);
 
-   if (!cholmod_amd(&block_matrix, nullptr, 0, &block_ordering[0], &cc_)) {
 
-     return false;
 
-   }
 
-   BlockOrderingToScalarOrdering(row_blocks, block_ordering, ordering);
 
-   return true;
 
- }
 
- LinearSolverTerminationType SuiteSparse::Cholesky(cholmod_sparse* A,
 
-                                                   cholmod_factor* L,
 
-                                                   string* message) {
 
-   CHECK(A != nullptr);
 
-   CHECK(L != nullptr);
 
-   // Save the current print level and silence CHOLMOD, otherwise
 
-   // CHOLMOD is prone to dumping stuff to stderr, which can be
 
-   // distracting when the error (matrix is indefinite) is not a fatal
 
-   // failure.
 
-   const int old_print_level = cc_.print;
 
-   cc_.print = 0;
 
-   cc_.quick_return_if_not_posdef = 1;
 
-   int cholmod_status = cholmod_factorize(A, L, &cc_);
 
-   cc_.print = old_print_level;
 
-   switch (cc_.status) {
 
-     case CHOLMOD_NOT_INSTALLED:
 
-       *message = "CHOLMOD failure: Method not installed.";
 
-       return LINEAR_SOLVER_FATAL_ERROR;
 
-     case CHOLMOD_OUT_OF_MEMORY:
 
-       *message = "CHOLMOD failure: Out of memory.";
 
-       return LINEAR_SOLVER_FATAL_ERROR;
 
-     case CHOLMOD_TOO_LARGE:
 
-       *message = "CHOLMOD failure: Integer overflow occurred.";
 
-       return LINEAR_SOLVER_FATAL_ERROR;
 
-     case CHOLMOD_INVALID:
 
-       *message = "CHOLMOD failure: Invalid input.";
 
-       return LINEAR_SOLVER_FATAL_ERROR;
 
-     case CHOLMOD_NOT_POSDEF:
 
-       *message = "CHOLMOD warning: Matrix not positive definite.";
 
-       return LINEAR_SOLVER_FAILURE;
 
-     case CHOLMOD_DSMALL:
 
-       *message =
 
-           "CHOLMOD warning: D for LDL' or diag(L) or "
 
-           "LL' has tiny absolute value.";
 
-       return LINEAR_SOLVER_FAILURE;
 
-     case CHOLMOD_OK:
 
-       if (cholmod_status != 0) {
 
-         return LINEAR_SOLVER_SUCCESS;
 
-       }
 
-       *message =
 
-           "CHOLMOD failure: cholmod_factorize returned false "
 
-           "but cholmod_common::status is CHOLMOD_OK."
 
-           "Please report this to ceres-solver@googlegroups.com.";
 
-       return LINEAR_SOLVER_FATAL_ERROR;
 
-     default:
 
-       *message = StringPrintf(
 
-           "Unknown cholmod return code: %d. "
 
-           "Please report this to ceres-solver@googlegroups.com.",
 
-           cc_.status);
 
-       return LINEAR_SOLVER_FATAL_ERROR;
 
-   }
 
-   return LINEAR_SOLVER_FATAL_ERROR;
 
- }
 
- cholmod_dense* SuiteSparse::Solve(cholmod_factor* L,
 
-                                   cholmod_dense* b,
 
-                                   string* message) {
 
-   if (cc_.status != CHOLMOD_OK) {
 
-     *message = "cholmod_solve failed. CHOLMOD status is not CHOLMOD_OK";
 
-     return nullptr;
 
-   }
 
-   return cholmod_solve(CHOLMOD_A, L, b, &cc_);
 
- }
 
- bool SuiteSparse::ApproximateMinimumDegreeOrdering(cholmod_sparse* matrix,
 
-                                                    int* ordering) {
 
-   return cholmod_amd(matrix, nullptr, 0, ordering, &cc_);
 
- }
 
- bool SuiteSparse::ConstrainedApproximateMinimumDegreeOrdering(
 
-     cholmod_sparse* matrix, int* constraints, int* ordering) {
 
- #ifndef CERES_NO_CAMD
 
-   return cholmod_camd(matrix, nullptr, 0, constraints, ordering, &cc_);
 
- #else
 
-   LOG(FATAL) << "Congratulations you have found a bug in Ceres."
 
-              << "Ceres Solver was compiled with SuiteSparse "
 
-              << "version 4.1.0 or less. Calling this function "
 
-              << "in that case is a bug. Please contact the"
 
-              << "the Ceres Solver developers.";
 
-   return false;
 
- #endif
 
- }
 
- std::unique_ptr<SparseCholesky> SuiteSparseCholesky::Create(
 
-     const OrderingType ordering_type) {
 
-   return std::unique_ptr<SparseCholesky>(new SuiteSparseCholesky(ordering_type));
 
- }
 
- SuiteSparseCholesky::SuiteSparseCholesky(const OrderingType ordering_type)
 
-     : ordering_type_(ordering_type), factor_(nullptr) {}
 
- SuiteSparseCholesky::~SuiteSparseCholesky() {
 
-   if (factor_ != nullptr) {
 
-     ss_.Free(factor_);
 
-   }
 
- }
 
- LinearSolverTerminationType SuiteSparseCholesky::Factorize(
 
-     CompressedRowSparseMatrix* lhs, string* message) {
 
-   if (lhs == nullptr) {
 
-     *message = "Failure: Input lhs is NULL.";
 
-     return LINEAR_SOLVER_FATAL_ERROR;
 
-   }
 
-   cholmod_sparse cholmod_lhs = ss_.CreateSparseMatrixTransposeView(lhs);
 
-   if (factor_ == nullptr) {
 
-     if (ordering_type_ == NATURAL) {
 
-       factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(&cholmod_lhs, message);
 
-     } else {
 
-       if (!lhs->col_blocks().empty() && !(lhs->row_blocks().empty())) {
 
-         factor_ = ss_.BlockAnalyzeCholesky(
 
-             &cholmod_lhs, lhs->col_blocks(), lhs->row_blocks(), message);
 
-       } else {
 
-         factor_ = ss_.AnalyzeCholesky(&cholmod_lhs, message);
 
-       }
 
-     }
 
-     if (factor_ == nullptr) {
 
-       return LINEAR_SOLVER_FATAL_ERROR;
 
-     }
 
-   }
 
-   return ss_.Cholesky(&cholmod_lhs, factor_, message);
 
- }
 
- CompressedRowSparseMatrix::StorageType SuiteSparseCholesky::StorageType()
 
-     const {
 
-   return ((ordering_type_ == NATURAL)
 
-               ? CompressedRowSparseMatrix::UPPER_TRIANGULAR
 
-               : CompressedRowSparseMatrix::LOWER_TRIANGULAR);
 
- }
 
- LinearSolverTerminationType SuiteSparseCholesky::Solve(const double* rhs,
 
-                                                        double* solution,
 
-                                                        string* message) {
 
-   // Error checking
 
-   if (factor_ == nullptr) {
 
-     *message = "Solve called without a call to Factorize first.";
 
-     return LINEAR_SOLVER_FATAL_ERROR;
 
-   }
 
-   const int num_cols = factor_->n;
 
-   cholmod_dense cholmod_rhs = ss_.CreateDenseVectorView(rhs, num_cols);
 
-   cholmod_dense* cholmod_dense_solution =
 
-       ss_.Solve(factor_, &cholmod_rhs, message);
 
-   if (cholmod_dense_solution == nullptr) {
 
-     return LINEAR_SOLVER_FAILURE;
 
-   }
 
-   memcpy(solution, cholmod_dense_solution->x, num_cols * sizeof(*solution));
 
-   ss_.Free(cholmod_dense_solution);
 
-   return LINEAR_SOLVER_SUCCESS;
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
- #endif  // CERES_NO_SUITESPARSE
 
 
  |