| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: moll.markus@arcor.de (Markus Moll)//         sameeragarwal@google.com (Sameer Agarwal)#include "ceres/polynomial.h"#include <limits>#include <cmath>#include <cstddef>#include <algorithm>#include "gtest/gtest.h"#include "ceres/function_sample.h"#include "ceres/test_util.h"namespace ceres {namespace internal {using std::vector;namespace {// For IEEE-754 doubles, machine precision is about 2e-16.const double kEpsilon = 1e-13;const double kEpsilonLoose = 1e-9;// Return the constant polynomial p(x) = 1.23.Vector ConstantPolynomial(double value) {  Vector poly(1);  poly(0) = value;  return poly;}// Return the polynomial p(x) = poly(x) * (x - root).Vector AddRealRoot(const Vector& poly, double root) {  Vector poly2(poly.size() + 1);  poly2.setZero();  poly2.head(poly.size()) += poly;  poly2.tail(poly.size()) -= root * poly;  return poly2;}// Return the polynomial// p(x) = poly(x) * (x - real - imag*i) * (x - real + imag*i).Vector AddComplexRootPair(const Vector& poly, double real, double imag) {  Vector poly2(poly.size() + 2);  poly2.setZero();  // Multiply poly by x^2 - 2real + abs(real,imag)^2  poly2.head(poly.size()) += poly;  poly2.segment(1, poly.size()) -= 2 * real * poly;  poly2.tail(poly.size()) += (real*real + imag*imag) * poly;  return poly2;}// Sort the entries in a vector.// Needed because the roots are not returned in sorted order.Vector SortVector(const Vector& in) {  Vector out(in);  std::sort(out.data(), out.data() + out.size());  return out;}// Run a test with the polynomial defined by the N real roots in roots_real.// If use_real is false, NULL is passed as the real argument to// FindPolynomialRoots. If use_imaginary is false, NULL is passed as the// imaginary argument to FindPolynomialRoots.template<int N>void RunPolynomialTestRealRoots(const double (&real_roots)[N],                                bool use_real,                                bool use_imaginary,                                double epsilon) {  Vector real;  Vector imaginary;  Vector poly = ConstantPolynomial(1.23);  for (int i = 0; i < N; ++i) {    poly = AddRealRoot(poly, real_roots[i]);  }  Vector* const real_ptr = use_real ? &real : NULL;  Vector* const imaginary_ptr = use_imaginary ? &imaginary : NULL;  bool success = FindPolynomialRoots(poly, real_ptr, imaginary_ptr);  EXPECT_EQ(success, true);  if (use_real) {    EXPECT_EQ(real.size(), N);    real = SortVector(real);    ExpectArraysClose(N, real.data(), real_roots, epsilon);  }  if (use_imaginary) {    EXPECT_EQ(imaginary.size(), N);    const Vector zeros = Vector::Zero(N);    ExpectArraysClose(N, imaginary.data(), zeros.data(), epsilon);  }}}  // namespaceTEST(Polynomial, InvalidPolynomialOfZeroLengthIsRejected) {  // Vector poly(0) is an ambiguous constructor call, so  // use the constructor with explicit column count.  Vector poly(0, 1);  Vector real;  Vector imag;  bool success = FindPolynomialRoots(poly, &real, &imag);  EXPECT_EQ(success, false);}TEST(Polynomial, ConstantPolynomialReturnsNoRoots) {  Vector poly = ConstantPolynomial(1.23);  Vector real;  Vector imag;  bool success = FindPolynomialRoots(poly, &real, &imag);  EXPECT_EQ(success, true);  EXPECT_EQ(real.size(), 0);  EXPECT_EQ(imag.size(), 0);}TEST(Polynomial, LinearPolynomialWithPositiveRootWorks) {  const double roots[1] = { 42.42 };  RunPolynomialTestRealRoots(roots, true, true, kEpsilon);}TEST(Polynomial, LinearPolynomialWithNegativeRootWorks) {  const double roots[1] = { -42.42 };  RunPolynomialTestRealRoots(roots, true, true, kEpsilon);}TEST(Polynomial, QuadraticPolynomialWithPositiveRootsWorks) {  const double roots[2] = { 1.0, 42.42 };  RunPolynomialTestRealRoots(roots, true, true, kEpsilon);}TEST(Polynomial, QuadraticPolynomialWithOneNegativeRootWorks) {  const double roots[2] = { -42.42, 1.0 };  RunPolynomialTestRealRoots(roots, true, true, kEpsilon);}TEST(Polynomial, QuadraticPolynomialWithTwoNegativeRootsWorks) {  const double roots[2] = { -42.42, -1.0 };  RunPolynomialTestRealRoots(roots, true, true, kEpsilon);}TEST(Polynomial, QuadraticPolynomialWithCloseRootsWorks) {  const double roots[2] = { 42.42, 42.43 };  RunPolynomialTestRealRoots(roots, true, false, kEpsilonLoose);}TEST(Polynomial, QuadraticPolynomialWithComplexRootsWorks) {  Vector real;  Vector imag;  Vector poly = ConstantPolynomial(1.23);  poly = AddComplexRootPair(poly, 42.42, 4.2);  bool success = FindPolynomialRoots(poly, &real, &imag);  EXPECT_EQ(success, true);  EXPECT_EQ(real.size(), 2);  EXPECT_EQ(imag.size(), 2);  ExpectClose(real(0), 42.42, kEpsilon);  ExpectClose(real(1), 42.42, kEpsilon);  ExpectClose(std::abs(imag(0)), 4.2, kEpsilon);  ExpectClose(std::abs(imag(1)), 4.2, kEpsilon);  ExpectClose(std::abs(imag(0) + imag(1)), 0.0, kEpsilon);}TEST(Polynomial, QuarticPolynomialWorks) {  const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };  RunPolynomialTestRealRoots(roots, true, true, kEpsilon);}TEST(Polynomial, QuarticPolynomialWithTwoClustersOfCloseRootsWorks) {  const double roots[4] = { 1.23e-1, 2.46e-1, 1.23e+5, 2.46e+5 };  RunPolynomialTestRealRoots(roots, true, true, kEpsilonLoose);}TEST(Polynomial, QuarticPolynomialWithTwoZeroRootsWorks) {  const double roots[4] = { -42.42, 0.0, 0.0, 42.42 };  RunPolynomialTestRealRoots(roots, true, true, 2 * kEpsilonLoose);}TEST(Polynomial, QuarticMonomialWorks) {  const double roots[4] = { 0.0, 0.0, 0.0, 0.0 };  RunPolynomialTestRealRoots(roots, true, true, kEpsilon);}TEST(Polynomial, NullPointerAsImaginaryPartWorks) {  const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };  RunPolynomialTestRealRoots(roots, true, false, kEpsilon);}TEST(Polynomial, NullPointerAsRealPartWorks) {  const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };  RunPolynomialTestRealRoots(roots, false, true, kEpsilon);}TEST(Polynomial, BothOutputArgumentsNullWorks) {  const double roots[4] = { 1.23e-4, 1.23e-1, 1.23e+2, 1.23e+5 };  RunPolynomialTestRealRoots(roots, false, false, kEpsilon);}TEST(Polynomial, DifferentiateConstantPolynomial) {  // p(x) = 1;  Vector polynomial(1);  polynomial(0) = 1.0;  const Vector derivative = DifferentiatePolynomial(polynomial);  EXPECT_EQ(derivative.rows(), 1);  EXPECT_EQ(derivative(0), 0);}TEST(Polynomial, DifferentiateQuadraticPolynomial) {  // p(x) = x^2 + 2x + 3;  Vector polynomial(3);  polynomial(0) = 1.0;  polynomial(1) = 2.0;  polynomial(2) = 3.0;  const Vector derivative = DifferentiatePolynomial(polynomial);  EXPECT_EQ(derivative.rows(), 2);  EXPECT_EQ(derivative(0), 2.0);  EXPECT_EQ(derivative(1), 2.0);}TEST(Polynomial, MinimizeConstantPolynomial) {  // p(x) = 1;  Vector polynomial(1);  polynomial(0) = 1.0;  double optimal_x = 0.0;  double optimal_value = 0.0;  double min_x = 0.0;  double max_x = 1.0;  MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);  EXPECT_EQ(optimal_value, 1.0);  EXPECT_LE(optimal_x, max_x);  EXPECT_GE(optimal_x, min_x);}TEST(Polynomial, MinimizeLinearPolynomial) {  // p(x) = x - 2  Vector polynomial(2);  polynomial(0) = 1.0;  polynomial(1) = 2.0;  double optimal_x = 0.0;  double optimal_value = 0.0;  double min_x = 0.0;  double max_x = 1.0;  MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);  EXPECT_EQ(optimal_x, 0.0);  EXPECT_EQ(optimal_value, 2.0);}TEST(Polynomial, MinimizeQuadraticPolynomial) {  // p(x) = x^2 - 3 x + 2  // min_x = 3/2  // min_value = -1/4;  Vector polynomial(3);  polynomial(0) = 1.0;  polynomial(1) = -3.0;  polynomial(2) = 2.0;  double optimal_x = 0.0;  double optimal_value = 0.0;  double min_x = -2.0;  double max_x = 2.0;  MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);  EXPECT_EQ(optimal_x, 3.0/2.0);  EXPECT_EQ(optimal_value, -1.0/4.0);  min_x = -2.0;  max_x = 1.0;  MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);  EXPECT_EQ(optimal_x, 1.0);  EXPECT_EQ(optimal_value, 0.0);  min_x = 2.0;  max_x = 3.0;  MinimizePolynomial(polynomial, min_x, max_x, &optimal_x, &optimal_value);  EXPECT_EQ(optimal_x, 2.0);  EXPECT_EQ(optimal_value, 0.0);}TEST(Polymomial, ConstantInterpolatingPolynomial) {  // p(x) = 1.0  Vector true_polynomial(1);  true_polynomial << 1.0;  vector<FunctionSample> samples;  FunctionSample sample;  sample.x = 1.0;  sample.value = 1.0;  sample.value_is_valid = true;  samples.push_back(sample);  const Vector polynomial = FindInterpolatingPolynomial(samples);  EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);}TEST(Polynomial, LinearInterpolatingPolynomial) {  // p(x) = 2x - 1  Vector true_polynomial(2);  true_polynomial << 2.0, -1.0;  vector<FunctionSample> samples;  FunctionSample sample;  sample.x = 1.0;  sample.value = 1.0;  sample.value_is_valid = true;  sample.gradient = 2.0;  sample.gradient_is_valid = true;  samples.push_back(sample);  const Vector polynomial = FindInterpolatingPolynomial(samples);  EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);}TEST(Polynomial, QuadraticInterpolatingPolynomial) {  // p(x) = 2x^2 + 3x + 2  Vector true_polynomial(3);  true_polynomial << 2.0, 3.0, 2.0;  vector<FunctionSample> samples;  {    FunctionSample sample;    sample.x = 1.0;    sample.value = 7.0;    sample.value_is_valid = true;    sample.gradient = 7.0;    sample.gradient_is_valid = true;    samples.push_back(sample);  }  {    FunctionSample sample;    sample.x = -3.0;    sample.value = 11.0;    sample.value_is_valid = true;    samples.push_back(sample);  }  Vector polynomial = FindInterpolatingPolynomial(samples);  EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-15);}TEST(Polynomial, DeficientCubicInterpolatingPolynomial) {  // p(x) = 2x^2 + 3x + 2  Vector true_polynomial(4);  true_polynomial << 0.0, 2.0, 3.0, 2.0;  vector<FunctionSample> samples;  {    FunctionSample sample;    sample.x = 1.0;    sample.value = 7.0;    sample.value_is_valid = true;    sample.gradient = 7.0;    sample.gradient_is_valid = true;    samples.push_back(sample);  }  {    FunctionSample sample;    sample.x = -3.0;    sample.value = 11.0;    sample.value_is_valid = true;    sample.gradient = -9;    sample.gradient_is_valid = true;    samples.push_back(sample);  }  const Vector polynomial = FindInterpolatingPolynomial(samples);  EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);}TEST(Polynomial, CubicInterpolatingPolynomialFromValues) {  // p(x) = x^3 + 2x^2 + 3x + 2  Vector true_polynomial(4);  true_polynomial << 1.0, 2.0, 3.0, 2.0;  vector<FunctionSample> samples;  {    FunctionSample sample;    sample.x = 1.0;    sample.value = EvaluatePolynomial(true_polynomial, sample.x);    sample.value_is_valid = true;    samples.push_back(sample);  }  {    FunctionSample sample;    sample.x = -3.0;    sample.value = EvaluatePolynomial(true_polynomial, sample.x);    sample.value_is_valid = true;    samples.push_back(sample);  }  {    FunctionSample sample;    sample.x = 2.0;    sample.value = EvaluatePolynomial(true_polynomial, sample.x);    sample.value_is_valid = true;    samples.push_back(sample);  }  {    FunctionSample sample;    sample.x = 0.0;    sample.value = EvaluatePolynomial(true_polynomial, sample.x);    sample.value_is_valid = true;    samples.push_back(sample);  }  const Vector polynomial = FindInterpolatingPolynomial(samples);  EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);}TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndOneGradient) {  // p(x) = x^3 + 2x^2 + 3x + 2  Vector true_polynomial(4);  true_polynomial << 1.0, 2.0, 3.0, 2.0;  Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial);  vector<FunctionSample> samples;  {    FunctionSample sample;    sample.x = 1.0;    sample.value = EvaluatePolynomial(true_polynomial, sample.x);    sample.value_is_valid = true;    samples.push_back(sample);  }  {    FunctionSample sample;    sample.x = -3.0;    sample.value = EvaluatePolynomial(true_polynomial, sample.x);    sample.value_is_valid = true;    samples.push_back(sample);  }  {    FunctionSample sample;    sample.x = 2.0;    sample.value = EvaluatePolynomial(true_polynomial, sample.x);    sample.value_is_valid = true;    sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);    sample.gradient_is_valid = true;    samples.push_back(sample);  }  const Vector polynomial = FindInterpolatingPolynomial(samples);  EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);}TEST(Polynomial, CubicInterpolatingPolynomialFromValuesAndGradients) {  // p(x) = x^3 + 2x^2 + 3x + 2  Vector true_polynomial(4);  true_polynomial << 1.0, 2.0, 3.0, 2.0;  Vector true_gradient_polynomial = DifferentiatePolynomial(true_polynomial);  vector<FunctionSample> samples;  {    FunctionSample sample;    sample.x = -3.0;    sample.value = EvaluatePolynomial(true_polynomial, sample.x);    sample.value_is_valid = true;    sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);    sample.gradient_is_valid = true;    samples.push_back(sample);  }  {    FunctionSample sample;    sample.x = 2.0;    sample.value = EvaluatePolynomial(true_polynomial, sample.x);    sample.value_is_valid = true;    sample.gradient = EvaluatePolynomial(true_gradient_polynomial, sample.x);    sample.gradient_is_valid = true;    samples.push_back(sample);  }  const Vector polynomial = FindInterpolatingPolynomial(samples);  EXPECT_NEAR((true_polynomial - polynomial).norm(), 0.0, 1e-14);}}  // namespace internal}  // namespace ceres
 |