| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)//// Generic loop for line search based optimization algorithms.//// This is primarily inpsired by the minFunc packaged written by Mark// Schmidt.//// http://www.di.ens.fr/~mschmidt/Software/minFunc.html//// For details on the theory and implementation see "Numerical// Optimization" by Nocedal & Wright.#include "ceres/line_search_minimizer.h"#include <algorithm>#include <cstdlib>#include <cmath>#include <memory>#include <string>#include <vector>#include "Eigen/Dense"#include "ceres/array_utils.h"#include "ceres/evaluator.h"#include "ceres/internal/eigen.h"#include "ceres/internal/port.h"#include "ceres/line_search.h"#include "ceres/line_search_direction.h"#include "ceres/stringprintf.h"#include "ceres/types.h"#include "ceres/wall_time.h"#include "glog/logging.h"namespace ceres {namespace internal {namespace {bool EvaluateGradientNorms(Evaluator* evaluator,                           const Vector& x,                           LineSearchMinimizer::State* state,                           std::string* message) {  Vector negative_gradient = -state->gradient;  Vector projected_gradient_step(x.size());  if (!evaluator->Plus(          x.data(), negative_gradient.data(), projected_gradient_step.data())) {    *message = "projected_gradient_step = Plus(x, -gradient) failed.";    return false;  }  state->gradient_squared_norm = (x - projected_gradient_step).squaredNorm();  state->gradient_max_norm =      (x - projected_gradient_step).lpNorm<Eigen::Infinity>();  return true;}}  // namespacevoid LineSearchMinimizer::Minimize(const Minimizer::Options& options,                                   double* parameters,                                   Solver::Summary* summary) {  const bool is_not_silent = !options.is_silent;  double start_time = WallTimeInSeconds();  double iteration_start_time =  start_time;  CHECK(options.evaluator != nullptr);  Evaluator* evaluator = options.evaluator.get();  const int num_parameters = evaluator->NumParameters();  const int num_effective_parameters = evaluator->NumEffectiveParameters();  summary->termination_type = NO_CONVERGENCE;  summary->num_successful_steps = 0;  summary->num_unsuccessful_steps = 0;  VectorRef x(parameters, num_parameters);  State current_state(num_parameters, num_effective_parameters);  State previous_state(num_parameters, num_effective_parameters);  IterationSummary iteration_summary;  iteration_summary.iteration = 0;  iteration_summary.step_is_valid = false;  iteration_summary.step_is_successful = false;  iteration_summary.cost_change = 0.0;  iteration_summary.gradient_max_norm = 0.0;  iteration_summary.gradient_norm = 0.0;  iteration_summary.step_norm = 0.0;  iteration_summary.linear_solver_iterations = 0;  iteration_summary.step_solver_time_in_seconds = 0;  // Do initial cost and gradient evaluation.  if (!evaluator->Evaluate(x.data(),                           &(current_state.cost),                           nullptr,                           current_state.gradient.data(),                           nullptr)) {    summary->termination_type = FAILURE;    summary->message = "Initial cost and jacobian evaluation failed.";    LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;    return;  }  if (!EvaluateGradientNorms(evaluator, x, ¤t_state, &summary->message)) {    summary->termination_type = FAILURE;    summary->message = "Initial cost and jacobian evaluation failed. "        "More details: " + summary->message;    LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;    return;  }  summary->initial_cost = current_state.cost + summary->fixed_cost;  iteration_summary.cost = current_state.cost + summary->fixed_cost;  iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm);  iteration_summary.gradient_max_norm = current_state.gradient_max_norm;  if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) {    summary->message = StringPrintf("Gradient tolerance reached. "                                    "Gradient max norm: %e <= %e",                                    iteration_summary.gradient_max_norm,                                    options.gradient_tolerance);    summary->termination_type = CONVERGENCE;    VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;    return;  }  iteration_summary.iteration_time_in_seconds =      WallTimeInSeconds() - iteration_start_time;  iteration_summary.cumulative_time_in_seconds =      WallTimeInSeconds() - start_time      + summary->preprocessor_time_in_seconds;  summary->iterations.push_back(iteration_summary);  LineSearchDirection::Options line_search_direction_options;  line_search_direction_options.num_parameters = num_effective_parameters;  line_search_direction_options.type = options.line_search_direction_type;  line_search_direction_options.nonlinear_conjugate_gradient_type =      options.nonlinear_conjugate_gradient_type;  line_search_direction_options.max_lbfgs_rank = options.max_lbfgs_rank;  line_search_direction_options.use_approximate_eigenvalue_bfgs_scaling =      options.use_approximate_eigenvalue_bfgs_scaling;  std::unique_ptr<LineSearchDirection> line_search_direction(      LineSearchDirection::Create(line_search_direction_options));  LineSearchFunction line_search_function(evaluator);  LineSearch::Options line_search_options;  line_search_options.interpolation_type =      options.line_search_interpolation_type;  line_search_options.min_step_size = options.min_line_search_step_size;  line_search_options.sufficient_decrease =      options.line_search_sufficient_function_decrease;  line_search_options.max_step_contraction =      options.max_line_search_step_contraction;  line_search_options.min_step_contraction =      options.min_line_search_step_contraction;  line_search_options.max_num_iterations =      options.max_num_line_search_step_size_iterations;  line_search_options.sufficient_curvature_decrease =      options.line_search_sufficient_curvature_decrease;  line_search_options.max_step_expansion =      options.max_line_search_step_expansion;  line_search_options.is_silent = options.is_silent;  line_search_options.function = &line_search_function;  std::unique_ptr<LineSearch>      line_search(LineSearch::Create(options.line_search_type,                                     line_search_options,                                     &summary->message));  if (line_search.get() == nullptr) {    summary->termination_type = FAILURE;    LOG_IF(ERROR, is_not_silent) << "Terminating: " << summary->message;    return;  }  LineSearch::Summary line_search_summary;  int num_line_search_direction_restarts = 0;  while (true) {    if (!RunCallbacks(options, iteration_summary, summary)) {      break;    }    iteration_start_time = WallTimeInSeconds();    if (iteration_summary.iteration >= options.max_num_iterations) {      summary->message = "Maximum number of iterations reached.";      summary->termination_type = NO_CONVERGENCE;      VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;      break;    }    const double total_solver_time = iteration_start_time - start_time +        summary->preprocessor_time_in_seconds;    if (total_solver_time >= options.max_solver_time_in_seconds) {      summary->message = "Maximum solver time reached.";      summary->termination_type = NO_CONVERGENCE;      VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;      break;    }    iteration_summary = IterationSummary();    iteration_summary.iteration = summary->iterations.back().iteration + 1;    iteration_summary.step_is_valid = false;    iteration_summary.step_is_successful = false;    bool line_search_status = true;    if (iteration_summary.iteration == 1) {      current_state.search_direction = -current_state.gradient;    } else {      line_search_status = line_search_direction->NextDirection(          previous_state,          current_state,          ¤t_state.search_direction);    }    if (!line_search_status &&        num_line_search_direction_restarts >=        options.max_num_line_search_direction_restarts) {      // Line search direction failed to generate a new direction, and we      // have already reached our specified maximum number of restarts,      // terminate optimization.      summary->message =          StringPrintf("Line search direction failure: specified "                       "max_num_line_search_direction_restarts: %d reached.",                       options.max_num_line_search_direction_restarts);      summary->termination_type = FAILURE;      LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;      break;    } else if (!line_search_status) {      // Restart line search direction with gradient descent on first iteration      // as we have not yet reached our maximum number of restarts.      CHECK_LT(num_line_search_direction_restarts,               options.max_num_line_search_direction_restarts);      ++num_line_search_direction_restarts;      LOG_IF(WARNING, is_not_silent)          << "Line search direction algorithm: "          << LineSearchDirectionTypeToString(              options.line_search_direction_type)          << ", failed to produce a valid new direction at "          << "iteration: " << iteration_summary.iteration          << ". Restarting, number of restarts: "          << num_line_search_direction_restarts << " / "          << options.max_num_line_search_direction_restarts          << " [max].";      line_search_direction.reset(          LineSearchDirection::Create(line_search_direction_options));      current_state.search_direction = -current_state.gradient;    }    line_search_function.Init(x, current_state.search_direction);    current_state.directional_derivative =        current_state.gradient.dot(current_state.search_direction);    // TODO(sameeragarwal): Refactor this into its own object and add    // explanations for the various choices.    //    // Note that we use !line_search_status to ensure that we treat cases when    // we restarted the line search direction equivalently to the first    // iteration.    const double initial_step_size =        (iteration_summary.iteration == 1 || !line_search_status)        ? std::min(1.0, 1.0 / current_state.gradient_max_norm)        : std::min(1.0, 2.0 * (current_state.cost - previous_state.cost) /                   current_state.directional_derivative);    // By definition, we should only ever go forwards along the specified search    // direction in a line search, most likely cause for this being violated    // would be a numerical failure in the line search direction calculation.    if (initial_step_size < 0.0) {      summary->message =          StringPrintf("Numerical failure in line search, initial_step_size is "                       "negative: %.5e, directional_derivative: %.5e, "                       "(current_cost - previous_cost): %.5e",                       initial_step_size, current_state.directional_derivative,                       (current_state.cost - previous_state.cost));      summary->termination_type = FAILURE;      LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;      break;    }    line_search->Search(initial_step_size,                        current_state.cost,                        current_state.directional_derivative,                        &line_search_summary);    if (!line_search_summary.success) {      summary->message =          StringPrintf("Numerical failure in line search, failed to find "                       "a valid step size, (did not run out of iterations) "                       "using initial_step_size: %.5e, initial_cost: %.5e, "                       "initial_gradient: %.5e.",                       initial_step_size, current_state.cost,                       current_state.directional_derivative);      LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;      summary->termination_type = FAILURE;      break;    }    const FunctionSample& optimal_point = line_search_summary.optimal_point;    CHECK(optimal_point.vector_x_is_valid)        << "Congratulations, you found a bug in Ceres. Please report it.";    current_state.step_size = optimal_point.x;    previous_state = current_state;    iteration_summary.step_solver_time_in_seconds =        WallTimeInSeconds() - iteration_start_time;    if (optimal_point.vector_gradient_is_valid) {      current_state.cost = optimal_point.value;      current_state.gradient = optimal_point.vector_gradient;    } else {      Evaluator::EvaluateOptions evaluate_options;      evaluate_options.new_evaluation_point = false;      if (!evaluator->Evaluate(evaluate_options,                               optimal_point.vector_x.data(),                               &(current_state.cost),                               nullptr,                               current_state.gradient.data(),                               nullptr)) {        summary->termination_type = FAILURE;        summary->message = "Cost and jacobian evaluation failed.";        LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;        return;      }    }    if (!EvaluateGradientNorms(evaluator,                               optimal_point.vector_x,                               ¤t_state,                               &summary->message)) {      summary->termination_type = FAILURE;      summary->message =          "Step failed to evaluate. This should not happen as the step was "          "valid when it was selected by the line search. More details: " +          summary->message;      LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;      break;    }    // Compute the norm of the step in the ambient space.    iteration_summary.step_norm = (optimal_point.vector_x - x).norm();    const double x_norm = x.norm();    x = optimal_point.vector_x;    iteration_summary.gradient_max_norm = current_state.gradient_max_norm;    iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm);    iteration_summary.cost_change = previous_state.cost - current_state.cost;    iteration_summary.cost = current_state.cost + summary->fixed_cost;    iteration_summary.step_is_valid = true;    iteration_summary.step_is_successful = true;    iteration_summary.step_size =  current_state.step_size;    iteration_summary.line_search_function_evaluations =        line_search_summary.num_function_evaluations;    iteration_summary.line_search_gradient_evaluations =        line_search_summary.num_gradient_evaluations;    iteration_summary.line_search_iterations =        line_search_summary.num_iterations;    iteration_summary.iteration_time_in_seconds =        WallTimeInSeconds() - iteration_start_time;    iteration_summary.cumulative_time_in_seconds =        WallTimeInSeconds() - start_time        + summary->preprocessor_time_in_seconds;    summary->iterations.push_back(iteration_summary);    // Iterations inside the line search algorithm are considered    // 'steps' in the broader context, to distinguish these inner    // iterations from from the outer iterations of the line search    // minimizer. The number of line search steps is the total number    // of inner line search iterations (or steps) across the entire    // minimization.    summary->num_line_search_steps +=  line_search_summary.num_iterations;    summary->line_search_cost_evaluation_time_in_seconds +=        line_search_summary.cost_evaluation_time_in_seconds;    summary->line_search_gradient_evaluation_time_in_seconds +=        line_search_summary.gradient_evaluation_time_in_seconds;    summary->line_search_polynomial_minimization_time_in_seconds +=        line_search_summary.polynomial_minimization_time_in_seconds;    summary->line_search_total_time_in_seconds +=        line_search_summary.total_time_in_seconds;    ++summary->num_successful_steps;    const double step_size_tolerance = options.parameter_tolerance *                                       (x_norm + options.parameter_tolerance);    if (iteration_summary.step_norm <= step_size_tolerance) {      summary->message =          StringPrintf("Parameter tolerance reached. "                       "Relative step_norm: %e <= %e.",                       (iteration_summary.step_norm /                        (x_norm + options.parameter_tolerance)),                       options.parameter_tolerance);      summary->termination_type = CONVERGENCE;      VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;      return;    }    if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) {      summary->message = StringPrintf("Gradient tolerance reached. "                                      "Gradient max norm: %e <= %e",                                      iteration_summary.gradient_max_norm,                                      options.gradient_tolerance);      summary->termination_type = CONVERGENCE;      VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;      break;    }    const double absolute_function_tolerance =        options.function_tolerance * std::abs(previous_state.cost);    if (std::abs(iteration_summary.cost_change) <=        absolute_function_tolerance) {      summary->message = StringPrintf(          "Function tolerance reached. "          "|cost_change|/cost: %e <= %e",          std::abs(iteration_summary.cost_change) / previous_state.cost,          options.function_tolerance);      summary->termination_type = CONVERGENCE;      VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;      break;    }  }}}  // namespace internal}  // namespace ceres
 |