| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- //
 
- // Generic loop for line search based optimization algorithms.
 
- //
 
- // This is primarily inpsired by the minFunc packaged written by Mark
 
- // Schmidt.
 
- //
 
- // http://www.di.ens.fr/~mschmidt/Software/minFunc.html
 
- //
 
- // For details on the theory and implementation see "Numerical
 
- // Optimization" by Nocedal & Wright.
 
- #include "ceres/line_search_minimizer.h"
 
- #include <algorithm>
 
- #include <cstdlib>
 
- #include <cmath>
 
- #include <memory>
 
- #include <string>
 
- #include <vector>
 
- #include "Eigen/Dense"
 
- #include "ceres/array_utils.h"
 
- #include "ceres/evaluator.h"
 
- #include "ceres/internal/eigen.h"
 
- #include "ceres/internal/port.h"
 
- #include "ceres/line_search.h"
 
- #include "ceres/line_search_direction.h"
 
- #include "ceres/stringprintf.h"
 
- #include "ceres/types.h"
 
- #include "ceres/wall_time.h"
 
- #include "glog/logging.h"
 
- namespace ceres {
 
- namespace internal {
 
- namespace {
 
- bool EvaluateGradientNorms(Evaluator* evaluator,
 
-                            const Vector& x,
 
-                            LineSearchMinimizer::State* state,
 
-                            std::string* message) {
 
-   Vector negative_gradient = -state->gradient;
 
-   Vector projected_gradient_step(x.size());
 
-   if (!evaluator->Plus(
 
-           x.data(), negative_gradient.data(), projected_gradient_step.data())) {
 
-     *message = "projected_gradient_step = Plus(x, -gradient) failed.";
 
-     return false;
 
-   }
 
-   state->gradient_squared_norm = (x - projected_gradient_step).squaredNorm();
 
-   state->gradient_max_norm =
 
-       (x - projected_gradient_step).lpNorm<Eigen::Infinity>();
 
-   return true;
 
- }
 
- }  // namespace
 
- void LineSearchMinimizer::Minimize(const Minimizer::Options& options,
 
-                                    double* parameters,
 
-                                    Solver::Summary* summary) {
 
-   const bool is_not_silent = !options.is_silent;
 
-   double start_time = WallTimeInSeconds();
 
-   double iteration_start_time =  start_time;
 
-   CHECK(options.evaluator != nullptr);
 
-   Evaluator* evaluator = options.evaluator.get();
 
-   const int num_parameters = evaluator->NumParameters();
 
-   const int num_effective_parameters = evaluator->NumEffectiveParameters();
 
-   summary->termination_type = NO_CONVERGENCE;
 
-   summary->num_successful_steps = 0;
 
-   summary->num_unsuccessful_steps = 0;
 
-   VectorRef x(parameters, num_parameters);
 
-   State current_state(num_parameters, num_effective_parameters);
 
-   State previous_state(num_parameters, num_effective_parameters);
 
-   IterationSummary iteration_summary;
 
-   iteration_summary.iteration = 0;
 
-   iteration_summary.step_is_valid = false;
 
-   iteration_summary.step_is_successful = false;
 
-   iteration_summary.cost_change = 0.0;
 
-   iteration_summary.gradient_max_norm = 0.0;
 
-   iteration_summary.gradient_norm = 0.0;
 
-   iteration_summary.step_norm = 0.0;
 
-   iteration_summary.linear_solver_iterations = 0;
 
-   iteration_summary.step_solver_time_in_seconds = 0;
 
-   // Do initial cost and gradient evaluation.
 
-   if (!evaluator->Evaluate(x.data(),
 
-                            &(current_state.cost),
 
-                            nullptr,
 
-                            current_state.gradient.data(),
 
-                            nullptr)) {
 
-     summary->termination_type = FAILURE;
 
-     summary->message = "Initial cost and jacobian evaluation failed.";
 
-     LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;
 
-     return;
 
-   }
 
-   if (!EvaluateGradientNorms(evaluator, x, ¤t_state, &summary->message)) {
 
-     summary->termination_type = FAILURE;
 
-     summary->message = "Initial cost and jacobian evaluation failed. "
 
-         "More details: " + summary->message;
 
-     LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;
 
-     return;
 
-   }
 
-   summary->initial_cost = current_state.cost + summary->fixed_cost;
 
-   iteration_summary.cost = current_state.cost + summary->fixed_cost;
 
-   iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm);
 
-   iteration_summary.gradient_max_norm = current_state.gradient_max_norm;
 
-   if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) {
 
-     summary->message = StringPrintf("Gradient tolerance reached. "
 
-                                     "Gradient max norm: %e <= %e",
 
-                                     iteration_summary.gradient_max_norm,
 
-                                     options.gradient_tolerance);
 
-     summary->termination_type = CONVERGENCE;
 
-     VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;
 
-     return;
 
-   }
 
-   iteration_summary.iteration_time_in_seconds =
 
-       WallTimeInSeconds() - iteration_start_time;
 
-   iteration_summary.cumulative_time_in_seconds =
 
-       WallTimeInSeconds() - start_time
 
-       + summary->preprocessor_time_in_seconds;
 
-   summary->iterations.push_back(iteration_summary);
 
-   LineSearchDirection::Options line_search_direction_options;
 
-   line_search_direction_options.num_parameters = num_effective_parameters;
 
-   line_search_direction_options.type = options.line_search_direction_type;
 
-   line_search_direction_options.nonlinear_conjugate_gradient_type =
 
-       options.nonlinear_conjugate_gradient_type;
 
-   line_search_direction_options.max_lbfgs_rank = options.max_lbfgs_rank;
 
-   line_search_direction_options.use_approximate_eigenvalue_bfgs_scaling =
 
-       options.use_approximate_eigenvalue_bfgs_scaling;
 
-   std::unique_ptr<LineSearchDirection> line_search_direction(
 
-       LineSearchDirection::Create(line_search_direction_options));
 
-   LineSearchFunction line_search_function(evaluator);
 
-   LineSearch::Options line_search_options;
 
-   line_search_options.interpolation_type =
 
-       options.line_search_interpolation_type;
 
-   line_search_options.min_step_size = options.min_line_search_step_size;
 
-   line_search_options.sufficient_decrease =
 
-       options.line_search_sufficient_function_decrease;
 
-   line_search_options.max_step_contraction =
 
-       options.max_line_search_step_contraction;
 
-   line_search_options.min_step_contraction =
 
-       options.min_line_search_step_contraction;
 
-   line_search_options.max_num_iterations =
 
-       options.max_num_line_search_step_size_iterations;
 
-   line_search_options.sufficient_curvature_decrease =
 
-       options.line_search_sufficient_curvature_decrease;
 
-   line_search_options.max_step_expansion =
 
-       options.max_line_search_step_expansion;
 
-   line_search_options.is_silent = options.is_silent;
 
-   line_search_options.function = &line_search_function;
 
-   std::unique_ptr<LineSearch>
 
-       line_search(LineSearch::Create(options.line_search_type,
 
-                                      line_search_options,
 
-                                      &summary->message));
 
-   if (line_search.get() == nullptr) {
 
-     summary->termination_type = FAILURE;
 
-     LOG_IF(ERROR, is_not_silent) << "Terminating: " << summary->message;
 
-     return;
 
-   }
 
-   LineSearch::Summary line_search_summary;
 
-   int num_line_search_direction_restarts = 0;
 
-   while (true) {
 
-     if (!RunCallbacks(options, iteration_summary, summary)) {
 
-       break;
 
-     }
 
-     iteration_start_time = WallTimeInSeconds();
 
-     if (iteration_summary.iteration >= options.max_num_iterations) {
 
-       summary->message = "Maximum number of iterations reached.";
 
-       summary->termination_type = NO_CONVERGENCE;
 
-       VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;
 
-       break;
 
-     }
 
-     const double total_solver_time = iteration_start_time - start_time +
 
-         summary->preprocessor_time_in_seconds;
 
-     if (total_solver_time >= options.max_solver_time_in_seconds) {
 
-       summary->message = "Maximum solver time reached.";
 
-       summary->termination_type = NO_CONVERGENCE;
 
-       VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;
 
-       break;
 
-     }
 
-     iteration_summary = IterationSummary();
 
-     iteration_summary.iteration = summary->iterations.back().iteration + 1;
 
-     iteration_summary.step_is_valid = false;
 
-     iteration_summary.step_is_successful = false;
 
-     bool line_search_status = true;
 
-     if (iteration_summary.iteration == 1) {
 
-       current_state.search_direction = -current_state.gradient;
 
-     } else {
 
-       line_search_status = line_search_direction->NextDirection(
 
-           previous_state,
 
-           current_state,
 
-           ¤t_state.search_direction);
 
-     }
 
-     if (!line_search_status &&
 
-         num_line_search_direction_restarts >=
 
-         options.max_num_line_search_direction_restarts) {
 
-       // Line search direction failed to generate a new direction, and we
 
-       // have already reached our specified maximum number of restarts,
 
-       // terminate optimization.
 
-       summary->message =
 
-           StringPrintf("Line search direction failure: specified "
 
-                        "max_num_line_search_direction_restarts: %d reached.",
 
-                        options.max_num_line_search_direction_restarts);
 
-       summary->termination_type = FAILURE;
 
-       LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;
 
-       break;
 
-     } else if (!line_search_status) {
 
-       // Restart line search direction with gradient descent on first iteration
 
-       // as we have not yet reached our maximum number of restarts.
 
-       CHECK_LT(num_line_search_direction_restarts,
 
-                options.max_num_line_search_direction_restarts);
 
-       ++num_line_search_direction_restarts;
 
-       LOG_IF(WARNING, is_not_silent)
 
-           << "Line search direction algorithm: "
 
-           << LineSearchDirectionTypeToString(
 
-               options.line_search_direction_type)
 
-           << ", failed to produce a valid new direction at "
 
-           << "iteration: " << iteration_summary.iteration
 
-           << ". Restarting, number of restarts: "
 
-           << num_line_search_direction_restarts << " / "
 
-           << options.max_num_line_search_direction_restarts
 
-           << " [max].";
 
-       line_search_direction.reset(
 
-           LineSearchDirection::Create(line_search_direction_options));
 
-       current_state.search_direction = -current_state.gradient;
 
-     }
 
-     line_search_function.Init(x, current_state.search_direction);
 
-     current_state.directional_derivative =
 
-         current_state.gradient.dot(current_state.search_direction);
 
-     // TODO(sameeragarwal): Refactor this into its own object and add
 
-     // explanations for the various choices.
 
-     //
 
-     // Note that we use !line_search_status to ensure that we treat cases when
 
-     // we restarted the line search direction equivalently to the first
 
-     // iteration.
 
-     const double initial_step_size =
 
-         (iteration_summary.iteration == 1 || !line_search_status)
 
-         ? std::min(1.0, 1.0 / current_state.gradient_max_norm)
 
-         : std::min(1.0, 2.0 * (current_state.cost - previous_state.cost) /
 
-                    current_state.directional_derivative);
 
-     // By definition, we should only ever go forwards along the specified search
 
-     // direction in a line search, most likely cause for this being violated
 
-     // would be a numerical failure in the line search direction calculation.
 
-     if (initial_step_size < 0.0) {
 
-       summary->message =
 
-           StringPrintf("Numerical failure in line search, initial_step_size is "
 
-                        "negative: %.5e, directional_derivative: %.5e, "
 
-                        "(current_cost - previous_cost): %.5e",
 
-                        initial_step_size, current_state.directional_derivative,
 
-                        (current_state.cost - previous_state.cost));
 
-       summary->termination_type = FAILURE;
 
-       LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;
 
-       break;
 
-     }
 
-     line_search->Search(initial_step_size,
 
-                         current_state.cost,
 
-                         current_state.directional_derivative,
 
-                         &line_search_summary);
 
-     if (!line_search_summary.success) {
 
-       summary->message =
 
-           StringPrintf("Numerical failure in line search, failed to find "
 
-                        "a valid step size, (did not run out of iterations) "
 
-                        "using initial_step_size: %.5e, initial_cost: %.5e, "
 
-                        "initial_gradient: %.5e.",
 
-                        initial_step_size, current_state.cost,
 
-                        current_state.directional_derivative);
 
-       LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;
 
-       summary->termination_type = FAILURE;
 
-       break;
 
-     }
 
-     const FunctionSample& optimal_point = line_search_summary.optimal_point;
 
-     CHECK(optimal_point.vector_x_is_valid)
 
-         << "Congratulations, you found a bug in Ceres. Please report it.";
 
-     current_state.step_size = optimal_point.x;
 
-     previous_state = current_state;
 
-     iteration_summary.step_solver_time_in_seconds =
 
-         WallTimeInSeconds() - iteration_start_time;
 
-     if (optimal_point.vector_gradient_is_valid) {
 
-       current_state.cost = optimal_point.value;
 
-       current_state.gradient = optimal_point.vector_gradient;
 
-     } else {
 
-       Evaluator::EvaluateOptions evaluate_options;
 
-       evaluate_options.new_evaluation_point = false;
 
-       if (!evaluator->Evaluate(evaluate_options,
 
-                                optimal_point.vector_x.data(),
 
-                                &(current_state.cost),
 
-                                nullptr,
 
-                                current_state.gradient.data(),
 
-                                nullptr)) {
 
-         summary->termination_type = FAILURE;
 
-         summary->message = "Cost and jacobian evaluation failed.";
 
-         LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;
 
-         return;
 
-       }
 
-     }
 
-     if (!EvaluateGradientNorms(evaluator,
 
-                                optimal_point.vector_x,
 
-                                ¤t_state,
 
-                                &summary->message)) {
 
-       summary->termination_type = FAILURE;
 
-       summary->message =
 
-           "Step failed to evaluate. This should not happen as the step was "
 
-           "valid when it was selected by the line search. More details: " +
 
-           summary->message;
 
-       LOG_IF(WARNING, is_not_silent) << "Terminating: " << summary->message;
 
-       break;
 
-     }
 
-     // Compute the norm of the step in the ambient space.
 
-     iteration_summary.step_norm = (optimal_point.vector_x - x).norm();
 
-     const double x_norm = x.norm();
 
-     x = optimal_point.vector_x;
 
-     iteration_summary.gradient_max_norm = current_state.gradient_max_norm;
 
-     iteration_summary.gradient_norm = sqrt(current_state.gradient_squared_norm);
 
-     iteration_summary.cost_change = previous_state.cost - current_state.cost;
 
-     iteration_summary.cost = current_state.cost + summary->fixed_cost;
 
-     iteration_summary.step_is_valid = true;
 
-     iteration_summary.step_is_successful = true;
 
-     iteration_summary.step_size =  current_state.step_size;
 
-     iteration_summary.line_search_function_evaluations =
 
-         line_search_summary.num_function_evaluations;
 
-     iteration_summary.line_search_gradient_evaluations =
 
-         line_search_summary.num_gradient_evaluations;
 
-     iteration_summary.line_search_iterations =
 
-         line_search_summary.num_iterations;
 
-     iteration_summary.iteration_time_in_seconds =
 
-         WallTimeInSeconds() - iteration_start_time;
 
-     iteration_summary.cumulative_time_in_seconds =
 
-         WallTimeInSeconds() - start_time
 
-         + summary->preprocessor_time_in_seconds;
 
-     summary->iterations.push_back(iteration_summary);
 
-     // Iterations inside the line search algorithm are considered
 
-     // 'steps' in the broader context, to distinguish these inner
 
-     // iterations from from the outer iterations of the line search
 
-     // minimizer. The number of line search steps is the total number
 
-     // of inner line search iterations (or steps) across the entire
 
-     // minimization.
 
-     summary->num_line_search_steps +=  line_search_summary.num_iterations;
 
-     summary->line_search_cost_evaluation_time_in_seconds +=
 
-         line_search_summary.cost_evaluation_time_in_seconds;
 
-     summary->line_search_gradient_evaluation_time_in_seconds +=
 
-         line_search_summary.gradient_evaluation_time_in_seconds;
 
-     summary->line_search_polynomial_minimization_time_in_seconds +=
 
-         line_search_summary.polynomial_minimization_time_in_seconds;
 
-     summary->line_search_total_time_in_seconds +=
 
-         line_search_summary.total_time_in_seconds;
 
-     ++summary->num_successful_steps;
 
-     const double step_size_tolerance = options.parameter_tolerance *
 
-                                        (x_norm + options.parameter_tolerance);
 
-     if (iteration_summary.step_norm <= step_size_tolerance) {
 
-       summary->message =
 
-           StringPrintf("Parameter tolerance reached. "
 
-                        "Relative step_norm: %e <= %e.",
 
-                        (iteration_summary.step_norm /
 
-                         (x_norm + options.parameter_tolerance)),
 
-                        options.parameter_tolerance);
 
-       summary->termination_type = CONVERGENCE;
 
-       VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;
 
-       return;
 
-     }
 
-     if (iteration_summary.gradient_max_norm <= options.gradient_tolerance) {
 
-       summary->message = StringPrintf("Gradient tolerance reached. "
 
-                                       "Gradient max norm: %e <= %e",
 
-                                       iteration_summary.gradient_max_norm,
 
-                                       options.gradient_tolerance);
 
-       summary->termination_type = CONVERGENCE;
 
-       VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;
 
-       break;
 
-     }
 
-     const double absolute_function_tolerance =
 
-         options.function_tolerance * std::abs(previous_state.cost);
 
-     if (std::abs(iteration_summary.cost_change) <=
 
-         absolute_function_tolerance) {
 
-       summary->message = StringPrintf(
 
-           "Function tolerance reached. "
 
-           "|cost_change|/cost: %e <= %e",
 
-           std::abs(iteration_summary.cost_change) / previous_state.cost,
 
-           options.function_tolerance);
 
-       summary->termination_type = CONVERGENCE;
 
-       VLOG_IF(1, is_not_silent) << "Terminating: " << summary->message;
 
-       break;
 
-     }
 
-   }
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |