| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2017 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include <memory>#include "ceres/casts.h"#include "ceres/context_impl.h"#include "ceres/linear_least_squares_problems.h"#include "ceres/linear_solver.h"#include "ceres/triplet_sparse_matrix.h"#include "ceres/types.h"#include "glog/logging.h"#include "gtest/gtest.h"namespace ceres {namespace internal {typedef ::testing::    tuple<LinearSolverType, DenseLinearAlgebraLibraryType, bool, int>        Param;static std::string ParamInfoToString(testing::TestParamInfo<Param> info) {  Param param = info.param;  std::stringstream ss;  ss << LinearSolverTypeToString(::testing::get<0>(param)) << "_"     << DenseLinearAlgebraLibraryTypeToString(::testing::get<1>(param)) << "_"     << (::testing::get<2>(param) ? "Regularized" : "Unregularized") << "_"     << ::testing::get<3>(param);  return ss.str();}class DenseLinearSolverTest : public ::testing::TestWithParam<Param> {};TEST_P(DenseLinearSolverTest, _) {  Param param = GetParam();  const bool regularized = testing::get<2>(param);  std::unique_ptr<LinearLeastSquaresProblem> problem(      CreateLinearLeastSquaresProblemFromId(testing::get<3>(param)));  DenseSparseMatrix lhs(*down_cast<TripletSparseMatrix*>(problem->A.get()));  const int num_cols = lhs.num_cols();  const int num_rows = lhs.num_rows();  Vector rhs = Vector::Zero(num_rows + num_cols);  rhs.head(num_rows) = ConstVectorRef(problem->b.get(), num_rows);  LinearSolver::Options options;  options.type = ::testing::get<0>(param);  options.dense_linear_algebra_library_type = ::testing::get<1>(param);  ContextImpl context;  options.context = &context;  std::unique_ptr<LinearSolver> solver(LinearSolver::Create(options));  LinearSolver::PerSolveOptions per_solve_options;  if (regularized) {    per_solve_options.D = problem->D.get();  }  Vector solution(num_cols);  LinearSolver::Summary summary =      solver->Solve(&lhs, rhs.data(), per_solve_options, solution.data());  EXPECT_EQ(summary.termination_type, LINEAR_SOLVER_SUCCESS);  // If solving for the regularized solution, add the diagonal to the  // matrix. This makes subsequent computations simpler.  if (testing::get<2>(param)) {    lhs.AppendDiagonal(problem->D.get());  };  Vector tmp = Vector::Zero(num_rows + num_cols);  lhs.RightMultiply(solution.data(), tmp.data());  Vector actual_normal_rhs = Vector::Zero(num_cols);  lhs.LeftMultiply(tmp.data(), actual_normal_rhs.data());  Vector expected_normal_rhs = Vector::Zero(num_cols);  lhs.LeftMultiply(rhs.data(), expected_normal_rhs.data());  const double residual = (expected_normal_rhs - actual_normal_rhs).norm() /                          expected_normal_rhs.norm();  EXPECT_NEAR(residual, 0.0, 10 * std::numeric_limits<double>::epsilon());}namespace {// TODO(sameeragarwal): Should we move away from hard coded linear// least squares problem to randomly generated ones?#ifndef CERES_NO_LAPACKINSTANTIATE_TEST_SUITE_P(    DenseLinearSolver,    DenseLinearSolverTest,    ::testing::Combine(::testing::Values(DENSE_QR, DENSE_NORMAL_CHOLESKY),                       ::testing::Values(EIGEN, LAPACK),                       ::testing::Values(true, false),                       ::testing::Values(0, 1)),    ParamInfoToString);#elseINSTANTIATE_TEST_SUITE_P(    DenseLinearSolver,    DenseLinearSolverTest,    ::testing::Combine(::testing::Values(DENSE_QR, DENSE_NORMAL_CHOLESKY),                       ::testing::Values(EIGEN),                       ::testing::Values(true, false),                       ::testing::Values(0, 1)),    ParamInfoToString);#endif}  // namespace}  // namespace internal}  // namespace ceres
 |