| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2017 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include <memory>
 
- #include "ceres/casts.h"
 
- #include "ceres/context_impl.h"
 
- #include "ceres/linear_least_squares_problems.h"
 
- #include "ceres/linear_solver.h"
 
- #include "ceres/triplet_sparse_matrix.h"
 
- #include "ceres/types.h"
 
- #include "glog/logging.h"
 
- #include "gtest/gtest.h"
 
- namespace ceres {
 
- namespace internal {
 
- typedef ::testing::
 
-     tuple<LinearSolverType, DenseLinearAlgebraLibraryType, bool, int>
 
-         Param;
 
- static std::string ParamInfoToString(testing::TestParamInfo<Param> info) {
 
-   Param param = info.param;
 
-   std::stringstream ss;
 
-   ss << LinearSolverTypeToString(::testing::get<0>(param)) << "_"
 
-      << DenseLinearAlgebraLibraryTypeToString(::testing::get<1>(param)) << "_"
 
-      << (::testing::get<2>(param) ? "Regularized" : "Unregularized") << "_"
 
-      << ::testing::get<3>(param);
 
-   return ss.str();
 
- }
 
- class DenseLinearSolverTest : public ::testing::TestWithParam<Param> {};
 
- TEST_P(DenseLinearSolverTest, _) {
 
-   Param param = GetParam();
 
-   const bool regularized = testing::get<2>(param);
 
-   std::unique_ptr<LinearLeastSquaresProblem> problem(
 
-       CreateLinearLeastSquaresProblemFromId(testing::get<3>(param)));
 
-   DenseSparseMatrix lhs(*down_cast<TripletSparseMatrix*>(problem->A.get()));
 
-   const int num_cols = lhs.num_cols();
 
-   const int num_rows = lhs.num_rows();
 
-   Vector rhs = Vector::Zero(num_rows + num_cols);
 
-   rhs.head(num_rows) = ConstVectorRef(problem->b.get(), num_rows);
 
-   LinearSolver::Options options;
 
-   options.type = ::testing::get<0>(param);
 
-   options.dense_linear_algebra_library_type = ::testing::get<1>(param);
 
-   ContextImpl context;
 
-   options.context = &context;
 
-   std::unique_ptr<LinearSolver> solver(LinearSolver::Create(options));
 
-   LinearSolver::PerSolveOptions per_solve_options;
 
-   if (regularized) {
 
-     per_solve_options.D = problem->D.get();
 
-   }
 
-   Vector solution(num_cols);
 
-   LinearSolver::Summary summary =
 
-       solver->Solve(&lhs, rhs.data(), per_solve_options, solution.data());
 
-   EXPECT_EQ(summary.termination_type, LINEAR_SOLVER_SUCCESS);
 
-   // If solving for the regularized solution, add the diagonal to the
 
-   // matrix. This makes subsequent computations simpler.
 
-   if (testing::get<2>(param)) {
 
-     lhs.AppendDiagonal(problem->D.get());
 
-   };
 
-   Vector tmp = Vector::Zero(num_rows + num_cols);
 
-   lhs.RightMultiply(solution.data(), tmp.data());
 
-   Vector actual_normal_rhs = Vector::Zero(num_cols);
 
-   lhs.LeftMultiply(tmp.data(), actual_normal_rhs.data());
 
-   Vector expected_normal_rhs = Vector::Zero(num_cols);
 
-   lhs.LeftMultiply(rhs.data(), expected_normal_rhs.data());
 
-   const double residual = (expected_normal_rhs - actual_normal_rhs).norm() /
 
-                           expected_normal_rhs.norm();
 
-   EXPECT_NEAR(residual, 0.0, 10 * std::numeric_limits<double>::epsilon());
 
- }
 
- namespace {
 
- // TODO(sameeragarwal): Should we move away from hard coded linear
 
- // least squares problem to randomly generated ones?
 
- #ifndef CERES_NO_LAPACK
 
- INSTANTIATE_TEST_SUITE_P(
 
-     DenseLinearSolver,
 
-     DenseLinearSolverTest,
 
-     ::testing::Combine(::testing::Values(DENSE_QR, DENSE_NORMAL_CHOLESKY),
 
-                        ::testing::Values(EIGEN, LAPACK),
 
-                        ::testing::Values(true, false),
 
-                        ::testing::Values(0, 1)),
 
-     ParamInfoToString);
 
- #else
 
- INSTANTIATE_TEST_SUITE_P(
 
-     DenseLinearSolver,
 
-     DenseLinearSolverTest,
 
-     ::testing::Combine(::testing::Values(DENSE_QR, DENSE_NORMAL_CHOLESKY),
 
-                        ::testing::Values(EIGEN),
 
-                        ::testing::Values(true, false),
 
-                        ::testing::Values(0, 1)),
 
-     ParamInfoToString);
 
- #endif
 
- }  // namespace
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |