| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2015 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include "ceres/block_sparse_matrix.h"
 
- #include <cstddef>
 
- #include <algorithm>
 
- #include <vector>
 
- #include "ceres/block_structure.h"
 
- #include "ceres/internal/eigen.h"
 
- #include "ceres/random.h"
 
- #include "ceres/small_blas.h"
 
- #include "ceres/triplet_sparse_matrix.h"
 
- #include "glog/logging.h"
 
- namespace ceres {
 
- namespace internal {
 
- using std::vector;
 
- BlockSparseMatrix::~BlockSparseMatrix() {}
 
- BlockSparseMatrix::BlockSparseMatrix(
 
-     CompressedRowBlockStructure* block_structure)
 
-     : num_rows_(0),
 
-       num_cols_(0),
 
-       num_nonzeros_(0),
 
-       block_structure_(block_structure) {
 
-   CHECK(block_structure_ != nullptr);
 
-   // Count the number of columns in the matrix.
 
-   for (int i = 0; i < block_structure_->cols.size(); ++i) {
 
-     num_cols_ += block_structure_->cols[i].size;
 
-   }
 
-   // Count the number of non-zero entries and the number of rows in
 
-   // the matrix.
 
-   for (int i = 0; i < block_structure_->rows.size(); ++i) {
 
-     int row_block_size = block_structure_->rows[i].block.size;
 
-     num_rows_ += row_block_size;
 
-     const vector<Cell>& cells = block_structure_->rows[i].cells;
 
-     for (int j = 0; j < cells.size(); ++j) {
 
-       int col_block_id = cells[j].block_id;
 
-       int col_block_size = block_structure_->cols[col_block_id].size;
 
-       num_nonzeros_ += col_block_size * row_block_size;
 
-     }
 
-   }
 
-   CHECK_GE(num_rows_, 0);
 
-   CHECK_GE(num_cols_, 0);
 
-   CHECK_GE(num_nonzeros_, 0);
 
-   VLOG(2) << "Allocating values array with "
 
-           << num_nonzeros_ * sizeof(double) << " bytes.";  // NOLINT
 
-   values_.reset(new double[num_nonzeros_]);
 
-   max_num_nonzeros_ = num_nonzeros_;
 
-   CHECK(values_ != nullptr);
 
- }
 
- void BlockSparseMatrix::SetZero() {
 
-   std::fill(values_.get(), values_.get() + num_nonzeros_, 0.0);
 
- }
 
- void BlockSparseMatrix::RightMultiply(const double* x,  double* y) const {
 
-   CHECK(x != nullptr);
 
-   CHECK(y != nullptr);
 
-   for (int i = 0; i < block_structure_->rows.size(); ++i) {
 
-     int row_block_pos = block_structure_->rows[i].block.position;
 
-     int row_block_size = block_structure_->rows[i].block.size;
 
-     const vector<Cell>& cells = block_structure_->rows[i].cells;
 
-     for (int j = 0; j < cells.size(); ++j) {
 
-       int col_block_id = cells[j].block_id;
 
-       int col_block_size = block_structure_->cols[col_block_id].size;
 
-       int col_block_pos = block_structure_->cols[col_block_id].position;
 
-       MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
 
-           values_.get() + cells[j].position, row_block_size, col_block_size,
 
-           x + col_block_pos,
 
-           y + row_block_pos);
 
-     }
 
-   }
 
- }
 
- void BlockSparseMatrix::LeftMultiply(const double* x, double* y) const {
 
-   CHECK(x != nullptr);
 
-   CHECK(y != nullptr);
 
-   for (int i = 0; i < block_structure_->rows.size(); ++i) {
 
-     int row_block_pos = block_structure_->rows[i].block.position;
 
-     int row_block_size = block_structure_->rows[i].block.size;
 
-     const vector<Cell>& cells = block_structure_->rows[i].cells;
 
-     for (int j = 0; j < cells.size(); ++j) {
 
-       int col_block_id = cells[j].block_id;
 
-       int col_block_size = block_structure_->cols[col_block_id].size;
 
-       int col_block_pos = block_structure_->cols[col_block_id].position;
 
-       MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
 
-           values_.get() + cells[j].position, row_block_size, col_block_size,
 
-           x + row_block_pos,
 
-           y + col_block_pos);
 
-     }
 
-   }
 
- }
 
- void BlockSparseMatrix::SquaredColumnNorm(double* x) const {
 
-   CHECK(x != nullptr);
 
-   VectorRef(x, num_cols_).setZero();
 
-   for (int i = 0; i < block_structure_->rows.size(); ++i) {
 
-     int row_block_size = block_structure_->rows[i].block.size;
 
-     const vector<Cell>& cells = block_structure_->rows[i].cells;
 
-     for (int j = 0; j < cells.size(); ++j) {
 
-       int col_block_id = cells[j].block_id;
 
-       int col_block_size = block_structure_->cols[col_block_id].size;
 
-       int col_block_pos = block_structure_->cols[col_block_id].position;
 
-       const MatrixRef m(values_.get() + cells[j].position,
 
-                         row_block_size, col_block_size);
 
-       VectorRef(x + col_block_pos, col_block_size) += m.colwise().squaredNorm();
 
-     }
 
-   }
 
- }
 
- void BlockSparseMatrix::ScaleColumns(const double* scale) {
 
-   CHECK(scale != nullptr);
 
-   for (int i = 0; i < block_structure_->rows.size(); ++i) {
 
-     int row_block_size = block_structure_->rows[i].block.size;
 
-     const vector<Cell>& cells = block_structure_->rows[i].cells;
 
-     for (int j = 0; j < cells.size(); ++j) {
 
-       int col_block_id = cells[j].block_id;
 
-       int col_block_size = block_structure_->cols[col_block_id].size;
 
-       int col_block_pos = block_structure_->cols[col_block_id].position;
 
-       MatrixRef m(values_.get() + cells[j].position,
 
-                         row_block_size, col_block_size);
 
-       m *= ConstVectorRef(scale + col_block_pos, col_block_size).asDiagonal();
 
-     }
 
-   }
 
- }
 
- void BlockSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const {
 
-   CHECK(dense_matrix != nullptr);
 
-   dense_matrix->resize(num_rows_, num_cols_);
 
-   dense_matrix->setZero();
 
-   Matrix& m = *dense_matrix;
 
-   for (int i = 0; i < block_structure_->rows.size(); ++i) {
 
-     int row_block_pos = block_structure_->rows[i].block.position;
 
-     int row_block_size = block_structure_->rows[i].block.size;
 
-     const vector<Cell>& cells = block_structure_->rows[i].cells;
 
-     for (int j = 0; j < cells.size(); ++j) {
 
-       int col_block_id = cells[j].block_id;
 
-       int col_block_size = block_structure_->cols[col_block_id].size;
 
-       int col_block_pos = block_structure_->cols[col_block_id].position;
 
-       int jac_pos = cells[j].position;
 
-       m.block(row_block_pos, col_block_pos, row_block_size, col_block_size)
 
-           += MatrixRef(values_.get() + jac_pos, row_block_size, col_block_size);
 
-     }
 
-   }
 
- }
 
- void BlockSparseMatrix::ToTripletSparseMatrix(
 
-     TripletSparseMatrix* matrix) const {
 
-   CHECK(matrix != nullptr);
 
-   matrix->Reserve(num_nonzeros_);
 
-   matrix->Resize(num_rows_, num_cols_);
 
-   matrix->SetZero();
 
-   for (int i = 0; i < block_structure_->rows.size(); ++i) {
 
-     int row_block_pos = block_structure_->rows[i].block.position;
 
-     int row_block_size = block_structure_->rows[i].block.size;
 
-     const vector<Cell>& cells = block_structure_->rows[i].cells;
 
-     for (int j = 0; j < cells.size(); ++j) {
 
-       int col_block_id = cells[j].block_id;
 
-       int col_block_size = block_structure_->cols[col_block_id].size;
 
-       int col_block_pos = block_structure_->cols[col_block_id].position;
 
-       int jac_pos = cells[j].position;
 
-        for (int r = 0; r < row_block_size; ++r) {
 
-         for (int c = 0; c < col_block_size; ++c, ++jac_pos) {
 
-           matrix->mutable_rows()[jac_pos] = row_block_pos + r;
 
-           matrix->mutable_cols()[jac_pos] = col_block_pos + c;
 
-           matrix->mutable_values()[jac_pos] = values_[jac_pos];
 
-         }
 
-       }
 
-     }
 
-   }
 
-   matrix->set_num_nonzeros(num_nonzeros_);
 
- }
 
- // Return a pointer to the block structure. We continue to hold
 
- // ownership of the object though.
 
- const CompressedRowBlockStructure* BlockSparseMatrix::block_structure()
 
-     const {
 
-   return block_structure_.get();
 
- }
 
- void BlockSparseMatrix::ToTextFile(FILE* file) const {
 
-   CHECK(file != nullptr);
 
-   for (int i = 0; i < block_structure_->rows.size(); ++i) {
 
-     const int row_block_pos = block_structure_->rows[i].block.position;
 
-     const int row_block_size = block_structure_->rows[i].block.size;
 
-     const vector<Cell>& cells = block_structure_->rows[i].cells;
 
-     for (int j = 0; j < cells.size(); ++j) {
 
-       const int col_block_id = cells[j].block_id;
 
-       const int col_block_size = block_structure_->cols[col_block_id].size;
 
-       const int col_block_pos = block_structure_->cols[col_block_id].position;
 
-       int jac_pos = cells[j].position;
 
-       for (int r = 0; r < row_block_size; ++r) {
 
-         for (int c = 0; c < col_block_size; ++c) {
 
-           fprintf(file, "% 10d % 10d %17f\n",
 
-                   row_block_pos + r,
 
-                   col_block_pos + c,
 
-                   values_[jac_pos++]);
 
-         }
 
-       }
 
-     }
 
-   }
 
- }
 
- BlockSparseMatrix* BlockSparseMatrix::CreateDiagonalMatrix(
 
-     const double* diagonal, const std::vector<Block>& column_blocks) {
 
-   // Create the block structure for the diagonal matrix.
 
-   CompressedRowBlockStructure* bs = new CompressedRowBlockStructure();
 
-   bs->cols = column_blocks;
 
-   int position = 0;
 
-   bs->rows.resize(column_blocks.size(), CompressedRow(1));
 
-   for (int i = 0; i < column_blocks.size(); ++i) {
 
-     CompressedRow& row = bs->rows[i];
 
-     row.block = column_blocks[i];
 
-     Cell& cell = row.cells[0];
 
-     cell.block_id = i;
 
-     cell.position = position;
 
-     position += row.block.size * row.block.size;
 
-   }
 
-   // Create the BlockSparseMatrix with the given block structure.
 
-   BlockSparseMatrix* matrix = new BlockSparseMatrix(bs);
 
-   matrix->SetZero();
 
-   // Fill the values array of the block sparse matrix.
 
-   double* values = matrix->mutable_values();
 
-   for (int i = 0; i < column_blocks.size(); ++i) {
 
-     const int size = column_blocks[i].size;
 
-     for (int j = 0; j < size; ++j) {
 
-       // (j + 1) * size is compact way of accessing the (j,j) entry.
 
-       values[j * (size + 1)] = diagonal[j];
 
-     }
 
-     diagonal += size;
 
-     values += size * size;
 
-   }
 
-   return matrix;
 
- }
 
- void BlockSparseMatrix::AppendRows(const BlockSparseMatrix& m) {
 
-   CHECK_EQ(m.num_cols(), num_cols());
 
-   const CompressedRowBlockStructure* m_bs = m.block_structure();
 
-   CHECK_EQ(m_bs->cols.size(), block_structure_->cols.size());
 
-   const int old_num_nonzeros = num_nonzeros_;
 
-   const int old_num_row_blocks = block_structure_->rows.size();
 
-   block_structure_->rows.resize(old_num_row_blocks + m_bs->rows.size());
 
-   for (int i = 0; i < m_bs->rows.size(); ++i) {
 
-     const CompressedRow& m_row = m_bs->rows[i];
 
-     CompressedRow& row = block_structure_->rows[old_num_row_blocks + i];
 
-     row.block.size = m_row.block.size;
 
-     row.block.position = num_rows_;
 
-     num_rows_ += m_row.block.size;
 
-     row.cells.resize(m_row.cells.size());
 
-     for (int c = 0; c < m_row.cells.size(); ++c) {
 
-       const int block_id = m_row.cells[c].block_id;
 
-       row.cells[c].block_id = block_id;
 
-       row.cells[c].position = num_nonzeros_;
 
-       num_nonzeros_ += m_row.block.size * m_bs->cols[block_id].size;
 
-     }
 
-   }
 
-   if (num_nonzeros_ > max_num_nonzeros_) {
 
-     double* new_values = new double[num_nonzeros_];
 
-     std::copy(values_.get(), values_.get() + old_num_nonzeros, new_values);
 
-     values_.reset(new_values);
 
-     max_num_nonzeros_ = num_nonzeros_;
 
-   }
 
-   std::copy(m.values(),
 
-             m.values() + m.num_nonzeros(),
 
-             values_.get() + old_num_nonzeros);
 
- }
 
- void BlockSparseMatrix::DeleteRowBlocks(const int delta_row_blocks) {
 
-   const int num_row_blocks = block_structure_->rows.size();
 
-   int delta_num_nonzeros = 0;
 
-   int delta_num_rows = 0;
 
-   const std::vector<Block>& column_blocks = block_structure_->cols;
 
-   for (int i = 0; i < delta_row_blocks; ++i) {
 
-     const CompressedRow& row = block_structure_->rows[num_row_blocks - i - 1];
 
-     delta_num_rows += row.block.size;
 
-     for (int c = 0; c < row.cells.size(); ++c) {
 
-       const Cell& cell = row.cells[c];
 
-       delta_num_nonzeros += row.block.size * column_blocks[cell.block_id].size;
 
-     }
 
-   }
 
-   num_nonzeros_ -= delta_num_nonzeros;
 
-   num_rows_ -= delta_num_rows;
 
-   block_structure_->rows.resize(num_row_blocks - delta_row_blocks);
 
- }
 
- BlockSparseMatrix* BlockSparseMatrix::CreateRandomMatrix(
 
-     const BlockSparseMatrix::RandomMatrixOptions& options) {
 
-   CHECK_GT(options.num_row_blocks, 0);
 
-   CHECK_GT(options.min_row_block_size, 0);
 
-   CHECK_GT(options.max_row_block_size, 0);
 
-   CHECK_LE(options.min_row_block_size, options.max_row_block_size);
 
-   CHECK_GT(options.block_density, 0.0);
 
-   CHECK_LE(options.block_density, 1.0);
 
-   CompressedRowBlockStructure* bs = new CompressedRowBlockStructure();
 
-   if (options.col_blocks.empty()) {
 
-     CHECK_GT(options.num_col_blocks, 0);
 
-     CHECK_GT(options.min_col_block_size, 0);
 
-     CHECK_GT(options.max_col_block_size, 0);
 
-     CHECK_LE(options.min_col_block_size, options.max_col_block_size);
 
-     // Generate the col block structure.
 
-     int col_block_position = 0;
 
-     for (int i = 0; i < options.num_col_blocks; ++i) {
 
-       // Generate a random integer in [min_col_block_size, max_col_block_size]
 
-       const int delta_block_size =
 
-           Uniform(options.max_col_block_size - options.min_col_block_size);
 
-       const int col_block_size = options.min_col_block_size + delta_block_size;
 
-       bs->cols.push_back(Block(col_block_size, col_block_position));
 
-       col_block_position += col_block_size;
 
-     }
 
-   } else {
 
-     bs->cols = options.col_blocks;
 
-   }
 
-   bool matrix_has_blocks = false;
 
-   while (!matrix_has_blocks) {
 
-     VLOG(1) << "Clearing";
 
-     bs->rows.clear();
 
-     int row_block_position = 0;
 
-     int value_position = 0;
 
-     for (int r = 0; r < options.num_row_blocks; ++r) {
 
-       const int delta_block_size =
 
-           Uniform(options.max_row_block_size - options.min_row_block_size);
 
-       const int row_block_size = options.min_row_block_size + delta_block_size;
 
-       bs->rows.push_back(CompressedRow());
 
-       CompressedRow& row = bs->rows.back();
 
-       row.block.size = row_block_size;
 
-       row.block.position = row_block_position;
 
-       row_block_position += row_block_size;
 
-       for (int c = 0; c < bs->cols.size(); ++c) {
 
-         if (RandDouble() > options.block_density) continue;
 
-         row.cells.push_back(Cell());
 
-         Cell& cell = row.cells.back();
 
-         cell.block_id = c;
 
-         cell.position = value_position;
 
-         value_position += row_block_size * bs->cols[c].size;
 
-         matrix_has_blocks = true;
 
-       }
 
-     }
 
-   }
 
-   BlockSparseMatrix* matrix = new BlockSparseMatrix(bs);
 
-   double* values = matrix->mutable_values();
 
-   for (int i = 0; i < matrix->num_nonzeros(); ++i) {
 
-     values[i] = RandNormal();
 
-   }
 
-   return matrix;
 
- }
 
- }  // namespace internal
 
- }  // namespace ceres
 
 
  |