| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/block_sparse_matrix.h"#include <cstddef>#include <algorithm>#include <vector>#include "ceres/block_structure.h"#include "ceres/internal/eigen.h"#include "ceres/random.h"#include "ceres/small_blas.h"#include "ceres/triplet_sparse_matrix.h"#include "glog/logging.h"namespace ceres {namespace internal {using std::vector;BlockSparseMatrix::~BlockSparseMatrix() {}BlockSparseMatrix::BlockSparseMatrix(    CompressedRowBlockStructure* block_structure)    : num_rows_(0),      num_cols_(0),      num_nonzeros_(0),      block_structure_(block_structure) {  CHECK(block_structure_ != nullptr);  // Count the number of columns in the matrix.  for (int i = 0; i < block_structure_->cols.size(); ++i) {    num_cols_ += block_structure_->cols[i].size;  }  // Count the number of non-zero entries and the number of rows in  // the matrix.  for (int i = 0; i < block_structure_->rows.size(); ++i) {    int row_block_size = block_structure_->rows[i].block.size;    num_rows_ += row_block_size;    const vector<Cell>& cells = block_structure_->rows[i].cells;    for (int j = 0; j < cells.size(); ++j) {      int col_block_id = cells[j].block_id;      int col_block_size = block_structure_->cols[col_block_id].size;      num_nonzeros_ += col_block_size * row_block_size;    }  }  CHECK_GE(num_rows_, 0);  CHECK_GE(num_cols_, 0);  CHECK_GE(num_nonzeros_, 0);  VLOG(2) << "Allocating values array with "          << num_nonzeros_ * sizeof(double) << " bytes.";  // NOLINT  values_.reset(new double[num_nonzeros_]);  max_num_nonzeros_ = num_nonzeros_;  CHECK(values_ != nullptr);}void BlockSparseMatrix::SetZero() {  std::fill(values_.get(), values_.get() + num_nonzeros_, 0.0);}void BlockSparseMatrix::RightMultiply(const double* x,  double* y) const {  CHECK(x != nullptr);  CHECK(y != nullptr);  for (int i = 0; i < block_structure_->rows.size(); ++i) {    int row_block_pos = block_structure_->rows[i].block.position;    int row_block_size = block_structure_->rows[i].block.size;    const vector<Cell>& cells = block_structure_->rows[i].cells;    for (int j = 0; j < cells.size(); ++j) {      int col_block_id = cells[j].block_id;      int col_block_size = block_structure_->cols[col_block_id].size;      int col_block_pos = block_structure_->cols[col_block_id].position;      MatrixVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(          values_.get() + cells[j].position, row_block_size, col_block_size,          x + col_block_pos,          y + row_block_pos);    }  }}void BlockSparseMatrix::LeftMultiply(const double* x, double* y) const {  CHECK(x != nullptr);  CHECK(y != nullptr);  for (int i = 0; i < block_structure_->rows.size(); ++i) {    int row_block_pos = block_structure_->rows[i].block.position;    int row_block_size = block_structure_->rows[i].block.size;    const vector<Cell>& cells = block_structure_->rows[i].cells;    for (int j = 0; j < cells.size(); ++j) {      int col_block_id = cells[j].block_id;      int col_block_size = block_structure_->cols[col_block_id].size;      int col_block_pos = block_structure_->cols[col_block_id].position;      MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(          values_.get() + cells[j].position, row_block_size, col_block_size,          x + row_block_pos,          y + col_block_pos);    }  }}void BlockSparseMatrix::SquaredColumnNorm(double* x) const {  CHECK(x != nullptr);  VectorRef(x, num_cols_).setZero();  for (int i = 0; i < block_structure_->rows.size(); ++i) {    int row_block_size = block_structure_->rows[i].block.size;    const vector<Cell>& cells = block_structure_->rows[i].cells;    for (int j = 0; j < cells.size(); ++j) {      int col_block_id = cells[j].block_id;      int col_block_size = block_structure_->cols[col_block_id].size;      int col_block_pos = block_structure_->cols[col_block_id].position;      const MatrixRef m(values_.get() + cells[j].position,                        row_block_size, col_block_size);      VectorRef(x + col_block_pos, col_block_size) += m.colwise().squaredNorm();    }  }}void BlockSparseMatrix::ScaleColumns(const double* scale) {  CHECK(scale != nullptr);  for (int i = 0; i < block_structure_->rows.size(); ++i) {    int row_block_size = block_structure_->rows[i].block.size;    const vector<Cell>& cells = block_structure_->rows[i].cells;    for (int j = 0; j < cells.size(); ++j) {      int col_block_id = cells[j].block_id;      int col_block_size = block_structure_->cols[col_block_id].size;      int col_block_pos = block_structure_->cols[col_block_id].position;      MatrixRef m(values_.get() + cells[j].position,                        row_block_size, col_block_size);      m *= ConstVectorRef(scale + col_block_pos, col_block_size).asDiagonal();    }  }}void BlockSparseMatrix::ToDenseMatrix(Matrix* dense_matrix) const {  CHECK(dense_matrix != nullptr);  dense_matrix->resize(num_rows_, num_cols_);  dense_matrix->setZero();  Matrix& m = *dense_matrix;  for (int i = 0; i < block_structure_->rows.size(); ++i) {    int row_block_pos = block_structure_->rows[i].block.position;    int row_block_size = block_structure_->rows[i].block.size;    const vector<Cell>& cells = block_structure_->rows[i].cells;    for (int j = 0; j < cells.size(); ++j) {      int col_block_id = cells[j].block_id;      int col_block_size = block_structure_->cols[col_block_id].size;      int col_block_pos = block_structure_->cols[col_block_id].position;      int jac_pos = cells[j].position;      m.block(row_block_pos, col_block_pos, row_block_size, col_block_size)          += MatrixRef(values_.get() + jac_pos, row_block_size, col_block_size);    }  }}void BlockSparseMatrix::ToTripletSparseMatrix(    TripletSparseMatrix* matrix) const {  CHECK(matrix != nullptr);  matrix->Reserve(num_nonzeros_);  matrix->Resize(num_rows_, num_cols_);  matrix->SetZero();  for (int i = 0; i < block_structure_->rows.size(); ++i) {    int row_block_pos = block_structure_->rows[i].block.position;    int row_block_size = block_structure_->rows[i].block.size;    const vector<Cell>& cells = block_structure_->rows[i].cells;    for (int j = 0; j < cells.size(); ++j) {      int col_block_id = cells[j].block_id;      int col_block_size = block_structure_->cols[col_block_id].size;      int col_block_pos = block_structure_->cols[col_block_id].position;      int jac_pos = cells[j].position;       for (int r = 0; r < row_block_size; ++r) {        for (int c = 0; c < col_block_size; ++c, ++jac_pos) {          matrix->mutable_rows()[jac_pos] = row_block_pos + r;          matrix->mutable_cols()[jac_pos] = col_block_pos + c;          matrix->mutable_values()[jac_pos] = values_[jac_pos];        }      }    }  }  matrix->set_num_nonzeros(num_nonzeros_);}// Return a pointer to the block structure. We continue to hold// ownership of the object though.const CompressedRowBlockStructure* BlockSparseMatrix::block_structure()    const {  return block_structure_.get();}void BlockSparseMatrix::ToTextFile(FILE* file) const {  CHECK(file != nullptr);  for (int i = 0; i < block_structure_->rows.size(); ++i) {    const int row_block_pos = block_structure_->rows[i].block.position;    const int row_block_size = block_structure_->rows[i].block.size;    const vector<Cell>& cells = block_structure_->rows[i].cells;    for (int j = 0; j < cells.size(); ++j) {      const int col_block_id = cells[j].block_id;      const int col_block_size = block_structure_->cols[col_block_id].size;      const int col_block_pos = block_structure_->cols[col_block_id].position;      int jac_pos = cells[j].position;      for (int r = 0; r < row_block_size; ++r) {        for (int c = 0; c < col_block_size; ++c) {          fprintf(file, "% 10d % 10d %17f\n",                  row_block_pos + r,                  col_block_pos + c,                  values_[jac_pos++]);        }      }    }  }}BlockSparseMatrix* BlockSparseMatrix::CreateDiagonalMatrix(    const double* diagonal, const std::vector<Block>& column_blocks) {  // Create the block structure for the diagonal matrix.  CompressedRowBlockStructure* bs = new CompressedRowBlockStructure();  bs->cols = column_blocks;  int position = 0;  bs->rows.resize(column_blocks.size(), CompressedRow(1));  for (int i = 0; i < column_blocks.size(); ++i) {    CompressedRow& row = bs->rows[i];    row.block = column_blocks[i];    Cell& cell = row.cells[0];    cell.block_id = i;    cell.position = position;    position += row.block.size * row.block.size;  }  // Create the BlockSparseMatrix with the given block structure.  BlockSparseMatrix* matrix = new BlockSparseMatrix(bs);  matrix->SetZero();  // Fill the values array of the block sparse matrix.  double* values = matrix->mutable_values();  for (int i = 0; i < column_blocks.size(); ++i) {    const int size = column_blocks[i].size;    for (int j = 0; j < size; ++j) {      // (j + 1) * size is compact way of accessing the (j,j) entry.      values[j * (size + 1)] = diagonal[j];    }    diagonal += size;    values += size * size;  }  return matrix;}void BlockSparseMatrix::AppendRows(const BlockSparseMatrix& m) {  CHECK_EQ(m.num_cols(), num_cols());  const CompressedRowBlockStructure* m_bs = m.block_structure();  CHECK_EQ(m_bs->cols.size(), block_structure_->cols.size());  const int old_num_nonzeros = num_nonzeros_;  const int old_num_row_blocks = block_structure_->rows.size();  block_structure_->rows.resize(old_num_row_blocks + m_bs->rows.size());  for (int i = 0; i < m_bs->rows.size(); ++i) {    const CompressedRow& m_row = m_bs->rows[i];    CompressedRow& row = block_structure_->rows[old_num_row_blocks + i];    row.block.size = m_row.block.size;    row.block.position = num_rows_;    num_rows_ += m_row.block.size;    row.cells.resize(m_row.cells.size());    for (int c = 0; c < m_row.cells.size(); ++c) {      const int block_id = m_row.cells[c].block_id;      row.cells[c].block_id = block_id;      row.cells[c].position = num_nonzeros_;      num_nonzeros_ += m_row.block.size * m_bs->cols[block_id].size;    }  }  if (num_nonzeros_ > max_num_nonzeros_) {    double* new_values = new double[num_nonzeros_];    std::copy(values_.get(), values_.get() + old_num_nonzeros, new_values);    values_.reset(new_values);    max_num_nonzeros_ = num_nonzeros_;  }  std::copy(m.values(),            m.values() + m.num_nonzeros(),            values_.get() + old_num_nonzeros);}void BlockSparseMatrix::DeleteRowBlocks(const int delta_row_blocks) {  const int num_row_blocks = block_structure_->rows.size();  int delta_num_nonzeros = 0;  int delta_num_rows = 0;  const std::vector<Block>& column_blocks = block_structure_->cols;  for (int i = 0; i < delta_row_blocks; ++i) {    const CompressedRow& row = block_structure_->rows[num_row_blocks - i - 1];    delta_num_rows += row.block.size;    for (int c = 0; c < row.cells.size(); ++c) {      const Cell& cell = row.cells[c];      delta_num_nonzeros += row.block.size * column_blocks[cell.block_id].size;    }  }  num_nonzeros_ -= delta_num_nonzeros;  num_rows_ -= delta_num_rows;  block_structure_->rows.resize(num_row_blocks - delta_row_blocks);}BlockSparseMatrix* BlockSparseMatrix::CreateRandomMatrix(    const BlockSparseMatrix::RandomMatrixOptions& options) {  CHECK_GT(options.num_row_blocks, 0);  CHECK_GT(options.min_row_block_size, 0);  CHECK_GT(options.max_row_block_size, 0);  CHECK_LE(options.min_row_block_size, options.max_row_block_size);  CHECK_GT(options.block_density, 0.0);  CHECK_LE(options.block_density, 1.0);  CompressedRowBlockStructure* bs = new CompressedRowBlockStructure();  if (options.col_blocks.empty()) {    CHECK_GT(options.num_col_blocks, 0);    CHECK_GT(options.min_col_block_size, 0);    CHECK_GT(options.max_col_block_size, 0);    CHECK_LE(options.min_col_block_size, options.max_col_block_size);    // Generate the col block structure.    int col_block_position = 0;    for (int i = 0; i < options.num_col_blocks; ++i) {      // Generate a random integer in [min_col_block_size, max_col_block_size]      const int delta_block_size =          Uniform(options.max_col_block_size - options.min_col_block_size);      const int col_block_size = options.min_col_block_size + delta_block_size;      bs->cols.push_back(Block(col_block_size, col_block_position));      col_block_position += col_block_size;    }  } else {    bs->cols = options.col_blocks;  }  bool matrix_has_blocks = false;  while (!matrix_has_blocks) {    VLOG(1) << "Clearing";    bs->rows.clear();    int row_block_position = 0;    int value_position = 0;    for (int r = 0; r < options.num_row_blocks; ++r) {      const int delta_block_size =          Uniform(options.max_row_block_size - options.min_row_block_size);      const int row_block_size = options.min_row_block_size + delta_block_size;      bs->rows.push_back(CompressedRow());      CompressedRow& row = bs->rows.back();      row.block.size = row_block_size;      row.block.position = row_block_position;      row_block_position += row_block_size;      for (int c = 0; c < bs->cols.size(); ++c) {        if (RandDouble() > options.block_density) continue;        row.cells.push_back(Cell());        Cell& cell = row.cells.back();        cell.block_id = c;        cell.position = value_position;        value_position += row_block_size * bs->cols[c].size;        matrix_has_blocks = true;      }    }  }  BlockSparseMatrix* matrix = new BlockSparseMatrix(bs);  double* values = matrix->mutable_values();  for (int i = 0; i < matrix->num_nonzeros(); ++i) {    values[i] = RandNormal();  }  return matrix;}}  // namespace internal}  // namespace ceres
 |