| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: kushalav@google.com (Avanish Kushal)#include "ceres/visibility.h"#include <algorithm>#include <cmath>#include <ctime>#include <set>#include <unordered_map>#include <utility>#include <vector>#include "ceres/block_structure.h"#include "ceres/graph.h"#include "ceres/pair_hash.h"#include "glog/logging.h"namespace ceres {namespace internal {using std::make_pair;using std::max;using std::pair;using std::set;using std::vector;void ComputeVisibility(const CompressedRowBlockStructure& block_structure,                       const int num_eliminate_blocks,                       vector<set<int>>* visibility) {  CHECK(visibility != nullptr);  // Clear the visibility vector and resize it to hold a  // vector for each camera.  visibility->resize(0);  visibility->resize(block_structure.cols.size() - num_eliminate_blocks);  for (int i = 0; i < block_structure.rows.size(); ++i) {    const vector<Cell>& cells = block_structure.rows[i].cells;    int block_id = cells[0].block_id;    // If the first block is not an e_block, then skip this row block.    if (block_id >= num_eliminate_blocks) {      continue;    }    for (int j = 1; j < cells.size(); ++j) {      int camera_block_id = cells[j].block_id - num_eliminate_blocks;      DCHECK_GE(camera_block_id, 0);      DCHECK_LT(camera_block_id, visibility->size());      (*visibility)[camera_block_id].insert(block_id);    }  }}WeightedGraph<int>* CreateSchurComplementGraph(    const vector<set<int>>& visibility) {  const time_t start_time = time(NULL);  // Compute the number of e_blocks/point blocks. Since the visibility  // set for each e_block/camera contains the set of e_blocks/points  // visible to it, we find the maximum across all visibility sets.  int num_points = 0;  for (int i = 0; i < visibility.size(); i++) {    if (visibility[i].size() > 0) {      num_points = max(num_points, (*visibility[i].rbegin()) + 1);    }  }  // Invert the visibility. The input is a camera->point mapping,  // which tells us which points are visible in which  // cameras. However, to compute the sparsity structure of the Schur  // Complement efficiently, its better to have the point->camera  // mapping.  vector<set<int>> inverse_visibility(num_points);  for (int i = 0; i < visibility.size(); i++) {    const set<int>& visibility_set = visibility[i];    for (const int v : visibility_set) {      inverse_visibility[v].insert(i);    }  }  // Map from camera pairs to number of points visible to both cameras  // in the pair.  std::unordered_map<pair<int, int>, int, pair_hash> camera_pairs;  // Count the number of points visible to each camera/f_block pair.  for (const auto& inverse_visibility_set : inverse_visibility) {    for (set<int>::const_iterator camera1 = inverse_visibility_set.begin();         camera1 != inverse_visibility_set.end();         ++camera1) {      set<int>::const_iterator camera2 = camera1;      for (++camera2; camera2 != inverse_visibility_set.end(); ++camera2) {        ++(camera_pairs[make_pair(*camera1, *camera2)]);      }    }  }  WeightedGraph<int>* graph = new WeightedGraph<int>;  // Add vertices and initialize the pairs for self edges so that self  // edges are guaranteed. This is needed for the Canonical views  // algorithm to work correctly.  static constexpr double kSelfEdgeWeight = 1.0;  for (int i = 0; i < visibility.size(); ++i) {    graph->AddVertex(i);    graph->AddEdge(i, i, kSelfEdgeWeight);  }  // Add an edge for each camera pair.  for (const auto& camera_pair_count : camera_pairs) {    const int camera1 = camera_pair_count.first.first;    const int camera2 = camera_pair_count.first.second;    const int count = camera_pair_count.second;    DCHECK_NE(camera1, camera2);    // Static cast necessary for Windows.    const double weight =        static_cast<double>(count) /        (sqrt(static_cast<double>(visibility[camera1].size() *                                  visibility[camera2].size())));    graph->AddEdge(camera1, camera2, weight);  }  VLOG(2) << "Schur complement graph time: " << (time(NULL) - start_time);  return graph;}}  // namespace internal}  // namespace ceres
 |