| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322 | // Copyright 2020 The Abseil Authors.//// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      https://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.//// -----------------------------------------------------------------------------// File: cord.h// -----------------------------------------------------------------------------//// This file defines the `absl::Cord` data structure and operations on that data// structure. A Cord is a string-like sequence of characters optimized for// specific use cases. Unlike a `std::string`, which stores an array of// contiguous characters, Cord data is stored in a structure consisting of// separate, reference-counted "chunks." (Currently, this implementation is a// tree structure, though that implementation may change.)//// Because a Cord consists of these chunks, data can be added to or removed from// a Cord during its lifetime. Chunks may also be shared between Cords. Unlike a// `std::string`, a Cord can therefore accomodate data that changes over its// lifetime, though it's not quite "mutable"; it can change only in the// attachment, detachment, or rearrangement of chunks of its constituent data.//// A Cord provides some benefit over `std::string` under the following (albeit// narrow) circumstances:////   * Cord data is designed to grow and shrink over a Cord's lifetime. Cord//     provides efficient insertions and deletions at the start and end of the//     character sequences, avoiding copies in those cases. Static data should//     generally be stored as strings.//   * External memory consisting of string-like data can be directly added to//     a Cord without requiring copies or allocations.//   * Cord data may be shared and copied cheaply. Cord provides a copy-on-write//     implementation and cheap sub-Cord operations. Copying a Cord is an O(1)//     operation.//// As a consequence to the above, Cord data is generally large. Small data// should generally use strings, as construction of a Cord requires some// overhead. Small Cords (<= 15 bytes) are represented inline, but most small// Cords are expected to grow over their lifetimes.//// Note that because a Cord is made up of separate chunked data, random access// to character data within a Cord is slower than within a `std::string`.//// Thread Safety//// Cord has the same thread-safety properties as many other types like// std::string, std::vector<>, int, etc -- it is thread-compatible. In// particular, if threads do not call non-const methods, then it is safe to call// const methods without synchronization. Copying a Cord produces a new instance// that can be used concurrently with the original in arbitrary ways.#ifndef ABSL_STRINGS_CORD_H_#define ABSL_STRINGS_CORD_H_#include <algorithm>#include <cstddef>#include <cstdint>#include <cstring>#include <iosfwd>#include <iterator>#include <string>#include <type_traits>#include "absl/base/internal/endian.h"#include "absl/base/internal/per_thread_tls.h"#include "absl/base/macros.h"#include "absl/base/port.h"#include "absl/container/inlined_vector.h"#include "absl/functional/function_ref.h"#include "absl/meta/type_traits.h"#include "absl/strings/internal/cord_internal.h"#include "absl/strings/internal/resize_uninitialized.h"#include "absl/strings/internal/string_constant.h"#include "absl/strings/string_view.h"#include "absl/types/optional.h"namespace absl {ABSL_NAMESPACE_BEGINclass Cord;class CordTestPeer;template <typename Releaser>Cord MakeCordFromExternal(absl::string_view, Releaser&&);void CopyCordToString(const Cord& src, std::string* dst);// Cord//// A Cord is a sequence of characters, designed to be more efficient than a// `std::string` in certain circumstances: namely, large string data that needs// to change over its lifetime or shared, especially when such data is shared// across API boundaries.//// A Cord stores its character data in a structure that allows efficient prepend// and append operations. This makes a Cord useful for large string data sent// over in a wire format that may need to be prepended or appended at some point// during the data exchange (e.g. HTTP, protocol buffers). For example, a// Cord is useful for storing an HTTP request, and prepending an HTTP header to// such a request.//// Cords should not be used for storing general string data, however. They// require overhead to construct and are slower than strings for random access.//// The Cord API provides the following common API operations://// * Create or assign Cords out of existing string data, memory, or other Cords// * Append and prepend data to an existing Cord// * Create new Sub-Cords from existing Cord data// * Swap Cord data and compare Cord equality// * Write out Cord data by constructing a `std::string`//// Additionally, the API provides iterator utilities to iterate through Cord// data via chunks or character bytes.//class Cord { private:  template <typename T>  using EnableIfString =      absl::enable_if_t<std::is_same<T, std::string>::value, int>; public:  // Cord::Cord() Constructors.  // Creates an empty Cord.  constexpr Cord() noexcept;  // Creates a Cord from an existing Cord. Cord is copyable and efficiently  // movable. The moved-from state is valid but unspecified.  Cord(const Cord& src);  Cord(Cord&& src) noexcept;  Cord& operator=(const Cord& x);  Cord& operator=(Cord&& x) noexcept;  // Creates a Cord from a `src` string. This constructor is marked explicit to  // prevent implicit Cord constructions from arguments convertible to an  // `absl::string_view`.  explicit Cord(absl::string_view src);  Cord& operator=(absl::string_view src);  // Creates a Cord from a `std::string&&` rvalue. These constructors are  // templated to avoid ambiguities for types that are convertible to both  // `absl::string_view` and `std::string`, such as `const char*`.  template <typename T, EnableIfString<T> = 0>  explicit Cord(T&& src);  template <typename T, EnableIfString<T> = 0>  Cord& operator=(T&& src);  // Cord::~Cord()  //  // Destructs the Cord.  ~Cord() {    if (contents_.is_tree()) DestroyCordSlow();  }  // MakeCordFromExternal()  //  // Creates a Cord that takes ownership of external string memory. The  // contents of `data` are not copied to the Cord; instead, the external  // memory is added to the Cord and reference-counted. This data may not be  // changed for the life of the Cord, though it may be prepended or appended  // to.  //  // `MakeCordFromExternal()` takes a callable "releaser" that is invoked when  // the reference count for `data` reaches zero. As noted above, this data must  // remain live until the releaser is invoked. The callable releaser also must:  //  //   * be move constructible  //   * support `void operator()(absl::string_view) const` or `void operator()`  //  // Example:  //  // Cord MakeCord(BlockPool* pool) {  //   Block* block = pool->NewBlock();  //   FillBlock(block);  //   return absl::MakeCordFromExternal(  //       block->ToStringView(),  //       [pool, block](absl::string_view v) {  //         pool->FreeBlock(block, v);  //       });  // }  //  // WARNING: Because a Cord can be reference-counted, it's likely a bug if your  // releaser doesn't do anything. For example, consider the following:  //  // void Foo(const char* buffer, int len) {  //   auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len),  //                                       [](absl::string_view) {});  //  //   // BUG: If Bar() copies its cord for any reason, including keeping a  //   // substring of it, the lifetime of buffer might be extended beyond  //   // when Foo() returns.  //   Bar(c);  // }  template <typename Releaser>  friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser);  // Cord::Clear()  //  // Releases the Cord data. Any nodes that share data with other Cords, if  // applicable, will have their reference counts reduced by 1.  void Clear();  // Cord::Append()  //  // Appends data to the Cord, which may come from another Cord or other string  // data.  void Append(const Cord& src);  void Append(Cord&& src);  void Append(absl::string_view src);  template <typename T, EnableIfString<T> = 0>  void Append(T&& src);  // Cord::Prepend()  //  // Prepends data to the Cord, which may come from another Cord or other string  // data.  void Prepend(const Cord& src);  void Prepend(absl::string_view src);  template <typename T, EnableIfString<T> = 0>  void Prepend(T&& src);  // Cord::RemovePrefix()  //  // Removes the first `n` bytes of a Cord.  void RemovePrefix(size_t n);  void RemoveSuffix(size_t n);  // Cord::Subcord()  //  // Returns a new Cord representing the subrange [pos, pos + new_size) of  // *this. If pos >= size(), the result is empty(). If  // (pos + new_size) >= size(), the result is the subrange [pos, size()).  Cord Subcord(size_t pos, size_t new_size) const;  // Cord::swap()  //  // Swaps the contents of the Cord with `other`.  void swap(Cord& other) noexcept;  // swap()  //  // Swaps the contents of two Cords.  friend void swap(Cord& x, Cord& y) noexcept {    x.swap(y);  }  // Cord::size()  //  // Returns the size of the Cord.  size_t size() const;  // Cord::empty()  //  // Determines whether the given Cord is empty, returning `true` is so.  bool empty() const;  // Cord::EstimatedMemoryUsage()  //  // Returns the *approximate* number of bytes held in full or in part by this  // Cord (which may not remain the same between invocations).  Note that Cords  // that share memory could each be "charged" independently for the same shared  // memory.  size_t EstimatedMemoryUsage() const;  // Cord::Compare()  //  // Compares 'this' Cord with rhs. This function and its relatives treat Cords  // as sequences of unsigned bytes. The comparison is a straightforward  // lexicographic comparison. `Cord::Compare()` returns values as follows:  //  //   -1  'this' Cord is smaller  //    0  two Cords are equal  //    1  'this' Cord is larger  int Compare(absl::string_view rhs) const;  int Compare(const Cord& rhs) const;  // Cord::StartsWith()  //  // Determines whether the Cord starts with the passed string data `rhs`.  bool StartsWith(const Cord& rhs) const;  bool StartsWith(absl::string_view rhs) const;  // Cord::EndsWidth()  //  // Determines whether the Cord ends with the passed string data `rhs`.  bool EndsWith(absl::string_view rhs) const;  bool EndsWith(const Cord& rhs) const;  // Cord::operator std::string()  //  // Converts a Cord into a `std::string()`. This operator is marked explicit to  // prevent unintended Cord usage in functions that take a string.  explicit operator std::string() const;  // CopyCordToString()  //  // Copies the contents of a `src` Cord into a `*dst` string.  //  // This function optimizes the case of reusing the destination string since it  // can reuse previously allocated capacity. However, this function does not  // guarantee that pointers previously returned by `dst->data()` remain valid  // even if `*dst` had enough capacity to hold `src`. If `*dst` is a new  // object, prefer to simply use the conversion operator to `std::string`.  friend void CopyCordToString(const Cord& src, std::string* dst);  class CharIterator;  //----------------------------------------------------------------------------  // Cord::ChunkIterator  //----------------------------------------------------------------------------  //  // A `Cord::ChunkIterator` allows iteration over the constituent chunks of its  // Cord. Such iteration allows you to perform non-const operatons on the data  // of a Cord without modifying it.  //  // Generally, you do not instantiate a `Cord::ChunkIterator` directly;  // instead, you create one implicitly through use of the `Cord::Chunks()`  // member function.  //  // The `Cord::ChunkIterator` has the following properties:  //  //   * The iterator is invalidated after any non-const operation on the  //     Cord object over which it iterates.  //   * The `string_view` returned by dereferencing a valid, non-`end()`  //     iterator is guaranteed to be non-empty.  //   * Two `ChunkIterator` objects can be compared equal if and only if they  //     remain valid and iterate over the same Cord.  //   * The iterator in this case is a proxy iterator; the `string_view`  //     returned by the iterator does not live inside the Cord, and its  //     lifetime is limited to the lifetime of the iterator itself. To help  //     prevent lifetime issues, `ChunkIterator::reference` is not a true  //     reference type and is equivalent to `value_type`.  //   * The iterator keeps state that can grow for Cords that contain many  //     nodes and are imbalanced due to sharing. Prefer to pass this type by  //     const reference instead of by value.  class ChunkIterator {   public:    using iterator_category = std::input_iterator_tag;    using value_type = absl::string_view;    using difference_type = ptrdiff_t;    using pointer = const value_type*;    using reference = value_type;    ChunkIterator() = default;    ChunkIterator& operator++();    ChunkIterator operator++(int);    bool operator==(const ChunkIterator& other) const;    bool operator!=(const ChunkIterator& other) const;    reference operator*() const;    pointer operator->() const;    friend class Cord;    friend class CharIterator;   private:    // Stack of right children of concat nodes that we have to visit.    // Keep this at the end of the structure to avoid cache-thrashing.    // TODO(jgm): Benchmark to see if there's a more optimal value than 47 for    // the inlined vector size (47 exists for backward compatibility).    using Stack = absl::InlinedVector<absl::cord_internal::CordRep*, 47>;    // Constructs a `begin()` iterator from `cord`.    explicit ChunkIterator(const Cord* cord);    // Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than    // `current_chunk_.size()`.    void RemoveChunkPrefix(size_t n);    Cord AdvanceAndReadBytes(size_t n);    void AdvanceBytes(size_t n);    // Stack specific operator++    ChunkIterator& AdvanceStack();    // Iterates `n` bytes, where `n` is expected to be greater than or equal to    // `current_chunk_.size()`.    void AdvanceBytesSlowPath(size_t n);    // A view into bytes of the current `CordRep`. It may only be a view to a    // suffix of bytes if this is being used by `CharIterator`.    absl::string_view current_chunk_;    // The current leaf, or `nullptr` if the iterator points to short data.    // If the current chunk is a substring node, current_leaf_ points to the    // underlying flat or external node.    absl::cord_internal::CordRep* current_leaf_ = nullptr;    // The number of bytes left in the `Cord` over which we are iterating.    size_t bytes_remaining_ = 0;    // See 'Stack' alias definition.    Stack stack_of_right_children_;  };  // Cord::ChunkIterator::chunk_begin()  //  // Returns an iterator to the first chunk of the `Cord`.  //  // Generally, prefer using `Cord::Chunks()` within a range-based for loop for  // iterating over the chunks of a Cord. This method may be useful for getting  // a `ChunkIterator` where range-based for-loops are not useful.  //  // Example:  //  //   absl::Cord::ChunkIterator FindAsChunk(const absl::Cord& c,  //                                         absl::string_view s) {  //     return std::find(c.chunk_begin(), c.chunk_end(), s);  //   }  ChunkIterator chunk_begin() const;  // Cord::ChunkItertator::chunk_end()  //  // Returns an iterator one increment past the last chunk of the `Cord`.  //  // Generally, prefer using `Cord::Chunks()` within a range-based for loop for  // iterating over the chunks of a Cord. This method may be useful for getting  // a `ChunkIterator` where range-based for-loops may not be available.  ChunkIterator chunk_end() const;  //----------------------------------------------------------------------------  // Cord::ChunkIterator::ChunkRange  //----------------------------------------------------------------------------  //  // `ChunkRange` is a helper class for iterating over the chunks of the `Cord`,  // producing an iterator which can be used within a range-based for loop.  // Construction of a `ChunkRange` will return an iterator pointing to the  // first chunk of the Cord. Generally, do not construct a `ChunkRange`  // directly; instead, prefer to use the `Cord::Chunks()` method.  //  // Implementation note: `ChunkRange` is simply a convenience wrapper over  // `Cord::chunk_begin()` and `Cord::chunk_end()`.  class ChunkRange {   public:    explicit ChunkRange(const Cord* cord) : cord_(cord) {}    ChunkIterator begin() const;    ChunkIterator end() const;   private:    const Cord* cord_;  };  // Cord::Chunks()  //  // Returns a `Cord::ChunkIterator::ChunkRange` for iterating over the chunks  // of a `Cord` with a range-based for-loop. For most iteration tasks on a  // Cord, use `Cord::Chunks()` to retrieve this iterator.  //  // Example:  //  //   void ProcessChunks(const Cord& cord) {  //     for (absl::string_view chunk : cord.Chunks()) { ... }  //   }  //  // Note that the ordinary caveats of temporary lifetime extension apply:  //  //   void Process() {  //     for (absl::string_view chunk : CordFactory().Chunks()) {  //       // The temporary Cord returned by CordFactory has been destroyed!  //     }  //   }  ChunkRange Chunks() const;  //----------------------------------------------------------------------------  // Cord::CharIterator  //----------------------------------------------------------------------------  //  // A `Cord::CharIterator` allows iteration over the constituent characters of  // a `Cord`.  //  // Generally, you do not instantiate a `Cord::CharIterator` directly; instead,  // you create one implicitly through use of the `Cord::Chars()` member  // function.  //  // A `Cord::CharIterator` has the following properties:  //  //   * The iterator is invalidated after any non-const operation on the  //     Cord object over which it iterates.  //   * Two `CharIterator` objects can be compared equal if and only if they  //     remain valid and iterate over the same Cord.  //   * The iterator keeps state that can grow for Cords that contain many  //     nodes and are imbalanced due to sharing. Prefer to pass this type by  //     const reference instead of by value.  //   * This type cannot act as a forward iterator because a `Cord` can reuse  //     sections of memory. This fact violates the requirement for forward  //     iterators to compare equal if dereferencing them returns the same  //     object.  class CharIterator {   public:    using iterator_category = std::input_iterator_tag;    using value_type = char;    using difference_type = ptrdiff_t;    using pointer = const char*;    using reference = const char&;    CharIterator() = default;    CharIterator& operator++();    CharIterator operator++(int);    bool operator==(const CharIterator& other) const;    bool operator!=(const CharIterator& other) const;    reference operator*() const;    pointer operator->() const;    friend Cord;   private:    explicit CharIterator(const Cord* cord) : chunk_iterator_(cord) {}    ChunkIterator chunk_iterator_;  };  // Cord::CharIterator::AdvanceAndRead()  //  // Advances the `Cord::CharIterator` by `n_bytes` and returns the bytes  // advanced as a separate `Cord`. `n_bytes` must be less than or equal to the  // number of bytes within the Cord; otherwise, behavior is undefined. It is  // valid to pass `char_end()` and `0`.  static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes);  // Cord::CharIterator::Advance()  //  // Advances the `Cord::CharIterator` by `n_bytes`. `n_bytes` must be less than  // or equal to the number of bytes remaining within the Cord; otherwise,  // behavior is undefined. It is valid to pass `char_end()` and `0`.  static void Advance(CharIterator* it, size_t n_bytes);  // Cord::CharIterator::ChunkRemaining()  //  // Returns the longest contiguous view starting at the iterator's position.  //  // `it` must be dereferenceable.  static absl::string_view ChunkRemaining(const CharIterator& it);  // Cord::CharIterator::char_begin()  //  // Returns an iterator to the first character of the `Cord`.  //  // Generally, prefer using `Cord::Chars()` within a range-based for loop for  // iterating over the chunks of a Cord. This method may be useful for getting  // a `CharIterator` where range-based for-loops may not be available.  CharIterator char_begin() const;  // Cord::CharIterator::char_end()  //  // Returns an iterator to one past the last character of the `Cord`.  //  // Generally, prefer using `Cord::Chars()` within a range-based for loop for  // iterating over the chunks of a Cord. This method may be useful for getting  // a `CharIterator` where range-based for-loops are not useful.  CharIterator char_end() const;  // Cord::CharIterator::CharRange  //  // `CharRange` is a helper class for iterating over the characters of a  // producing an iterator which can be used within a range-based for loop.  // Construction of a `CharRange` will return an iterator pointing to the first  // character of the Cord. Generally, do not construct a `CharRange` directly;  // instead, prefer to use the `Cord::Chars()` method show below.  //  // Implementation note: `CharRange` is simply a convenience wrapper over  // `Cord::char_begin()` and `Cord::char_end()`.  class CharRange {   public:    explicit CharRange(const Cord* cord) : cord_(cord) {}    CharIterator begin() const;    CharIterator end() const;   private:    const Cord* cord_;  };  // Cord::CharIterator::Chars()  //  // Returns a `Cord::CharIterator` for iterating over the characters of a  // `Cord` with a range-based for-loop. For most character-based iteration  // tasks on a Cord, use `Cord::Chars()` to retrieve this iterator.  //  // Example:  //  //   void ProcessCord(const Cord& cord) {  //     for (char c : cord.Chars()) { ... }  //   }  //  // Note that the ordinary caveats of temporary lifetime extension apply:  //  //   void Process() {  //     for (char c : CordFactory().Chars()) {  //       // The temporary Cord returned by CordFactory has been destroyed!  //     }  //   }  CharRange Chars() const;  // Cord::operator[]  //  // Gets the "i"th character of the Cord and returns it, provided that  // 0 <= i < Cord.size().  //  // NOTE: This routine is reasonably efficient. It is roughly  // logarithmic based on the number of chunks that make up the cord. Still,  // if you need to iterate over the contents of a cord, you should  // use a CharIterator/ChunkIterator rather than call operator[] or Get()  // repeatedly in a loop.  char operator[](size_t i) const;  // Cord::TryFlat()  //  // If this cord's representation is a single flat array, returns a  // string_view referencing that array.  Otherwise returns nullopt.  absl::optional<absl::string_view> TryFlat() const;  // Cord::Flatten()  //  // Flattens the cord into a single array and returns a view of the data.  //  // If the cord was already flat, the contents are not modified.  absl::string_view Flatten();  // Supports absl::Cord as a sink object for absl::Format().  friend void AbslFormatFlush(absl::Cord* cord, absl::string_view part) {    cord->Append(part);  }  template <typename H>  friend H AbslHashValue(H hash_state, const absl::Cord& c) {    absl::optional<absl::string_view> maybe_flat = c.TryFlat();    if (maybe_flat.has_value()) {      return H::combine(std::move(hash_state), *maybe_flat);    }    return c.HashFragmented(std::move(hash_state));  }  // Create a Cord with the contents of StringConstant<T>::value.  // No allocations will be done and no data will be copied.  // This is an INTERNAL API and subject to change or removal. This API can only  // be used by spelling absl::strings_internal::MakeStringConstant, which is  // also an internal API.  template <typename T>  explicit constexpr Cord(strings_internal::StringConstant<T>); private:  friend class CordTestPeer;  friend bool operator==(const Cord& lhs, const Cord& rhs);  friend bool operator==(const Cord& lhs, absl::string_view rhs);  // Calls the provided function once for each cord chunk, in order.  Unlike  // Chunks(), this API will not allocate memory.  void ForEachChunk(absl::FunctionRef<void(absl::string_view)>) const;  // Allocates new contiguous storage for the contents of the cord. This is  // called by Flatten() when the cord was not already flat.  absl::string_view FlattenSlowPath();  // Actual cord contents are hidden inside the following simple  // class so that we can isolate the bulk of cord.cc from changes  // to the representation.  //  // InlineRep holds either a tree pointer, or an array of kMaxInline bytes.  class InlineRep {   public:    static constexpr unsigned char kMaxInline = cord_internal::kMaxInline;    static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), "");    static constexpr unsigned char kTreeFlag = cord_internal::kTreeFlag;    static constexpr unsigned char kProfiledFlag = cord_internal::kProfiledFlag;    constexpr InlineRep() : data_() {}    InlineRep(const InlineRep& src);    InlineRep(InlineRep&& src);    InlineRep& operator=(const InlineRep& src);    InlineRep& operator=(InlineRep&& src) noexcept;    explicit constexpr InlineRep(cord_internal::InlineData data);    void Swap(InlineRep* rhs);    bool empty() const;    size_t size() const;    const char* data() const;  // Returns nullptr if holding pointer    void set_data(const char* data, size_t n,                  bool nullify_tail);  // Discards pointer, if any    char* set_data(size_t n);  // Write data to the result    // Returns nullptr if holding bytes    absl::cord_internal::CordRep* tree() const;    // Discards old pointer, if any    void set_tree(absl::cord_internal::CordRep* rep);    // Replaces a tree with a new root. This is faster than set_tree, but it    // should only be used when it's clear that the old rep was a tree.    void replace_tree(absl::cord_internal::CordRep* rep);    // Returns non-null iff was holding a pointer    absl::cord_internal::CordRep* clear();    // Converts to pointer if necessary.    absl::cord_internal::CordRep* force_tree(size_t extra_hint);    void reduce_size(size_t n);  // REQUIRES: holding data    void remove_prefix(size_t n);  // REQUIRES: holding data    void AppendArray(const char* src_data, size_t src_size);    absl::string_view FindFlatStartPiece() const;    void AppendTree(absl::cord_internal::CordRep* tree);    void PrependTree(absl::cord_internal::CordRep* tree);    void GetAppendRegion(char** region, size_t* size, size_t max_length);    void GetAppendRegion(char** region, size_t* size);    bool IsSame(const InlineRep& other) const {      return memcmp(&data_, &other.data_, sizeof(data_)) == 0;    }    int BitwiseCompare(const InlineRep& other) const {      uint64_t x, y;      // Use memcpy to avoid aliasing issues.      memcpy(&x, &data_, sizeof(x));      memcpy(&y, &other.data_, sizeof(y));      if (x == y) {        memcpy(&x, reinterpret_cast<const char*>(&data_) + 8, sizeof(x));        memcpy(&y, reinterpret_cast<const char*>(&other.data_) + 8, sizeof(y));        if (x == y) return 0;      }      return absl::big_endian::FromHost64(x) < absl::big_endian::FromHost64(y)                 ? -1                 : 1;    }    void CopyTo(std::string* dst) const {      // memcpy is much faster when operating on a known size. On most supported      // platforms, the small string optimization is large enough that resizing      // to 15 bytes does not cause a memory allocation.      absl::strings_internal::STLStringResizeUninitialized(dst,                                                           sizeof(data_) - 1);      memcpy(&(*dst)[0], &data_, sizeof(data_) - 1);      // erase is faster than resize because the logic for memory allocation is      // not needed.      dst->erase(tagged_size());    }    // Copies the inline contents into `dst`. Assumes the cord is not empty.    void CopyToArray(char* dst) const;    bool is_tree() const { return tagged_size() > kMaxInline; }   private:    friend class Cord;    void AssignSlow(const InlineRep& src);    // Unrefs the tree, stops profiling, and zeroes the contents    void ClearSlow();    void ResetToEmpty() { data_ = {}; }    // This uses reinterpret_cast instead of the union to avoid accessing the    // inactive union element. The tagged size is not a common prefix.    void set_tagged_size(char new_tag) {      reinterpret_cast<char*>(&data_)[kMaxInline] = new_tag;    }    char tagged_size() const {      return reinterpret_cast<const char*>(&data_)[kMaxInline];    }    cord_internal::InlineData data_;  };  InlineRep contents_;  // Helper for MemoryUsage().  static size_t MemoryUsageAux(const absl::cord_internal::CordRep* rep);  // Helper for GetFlat() and TryFlat().  static bool GetFlatAux(absl::cord_internal::CordRep* rep,                         absl::string_view* fragment);  // Helper for ForEachChunk().  static void ForEachChunkAux(      absl::cord_internal::CordRep* rep,      absl::FunctionRef<void(absl::string_view)> callback);  // The destructor for non-empty Cords.  void DestroyCordSlow();  // Out-of-line implementation of slower parts of logic.  void CopyToArraySlowPath(char* dst) const;  int CompareSlowPath(absl::string_view rhs, size_t compared_size,                      size_t size_to_compare) const;  int CompareSlowPath(const Cord& rhs, size_t compared_size,                      size_t size_to_compare) const;  bool EqualsImpl(absl::string_view rhs, size_t size_to_compare) const;  bool EqualsImpl(const Cord& rhs, size_t size_to_compare) const;  int CompareImpl(const Cord& rhs) const;  template <typename ResultType, typename RHS>  friend ResultType GenericCompare(const Cord& lhs, const RHS& rhs,                                   size_t size_to_compare);  static absl::string_view GetFirstChunk(const Cord& c);  static absl::string_view GetFirstChunk(absl::string_view sv);  // Returns a new reference to contents_.tree(), or steals an existing  // reference if called on an rvalue.  absl::cord_internal::CordRep* TakeRep() const&;  absl::cord_internal::CordRep* TakeRep() &&;  // Helper for Append().  template <typename C>  void AppendImpl(C&& src);  // Helper for AbslHashValue().  template <typename H>  H HashFragmented(H hash_state) const {    typename H::AbslInternalPiecewiseCombiner combiner;    ForEachChunk([&combiner, &hash_state](absl::string_view chunk) {      hash_state = combiner.add_buffer(std::move(hash_state), chunk.data(),                                       chunk.size());    });    return H::combine(combiner.finalize(std::move(hash_state)), size());  }};ABSL_NAMESPACE_END}  // namespace abslnamespace absl {ABSL_NAMESPACE_BEGIN// allow a Cord to be loggedextern std::ostream& operator<<(std::ostream& out, const Cord& cord);// ------------------------------------------------------------------// Internal details follow.  Clients should ignore.namespace cord_internal {// Fast implementation of memmove for up to 15 bytes. This implementation is// safe for overlapping regions. If nullify_tail is true, the destination is// padded with '\0' up to 16 bytes.inline void SmallMemmove(char* dst, const char* src, size_t n,                         bool nullify_tail = false) {  if (n >= 8) {    assert(n <= 16);    uint64_t buf1;    uint64_t buf2;    memcpy(&buf1, src, 8);    memcpy(&buf2, src + n - 8, 8);    if (nullify_tail) {      memset(dst + 8, 0, 8);    }    memcpy(dst, &buf1, 8);    memcpy(dst + n - 8, &buf2, 8);  } else if (n >= 4) {    uint32_t buf1;    uint32_t buf2;    memcpy(&buf1, src, 4);    memcpy(&buf2, src + n - 4, 4);    if (nullify_tail) {      memset(dst + 4, 0, 4);      memset(dst + 8, 0, 8);    }    memcpy(dst, &buf1, 4);    memcpy(dst + n - 4, &buf2, 4);  } else {    if (n != 0) {      dst[0] = src[0];      dst[n / 2] = src[n / 2];      dst[n - 1] = src[n - 1];    }    if (nullify_tail) {      memset(dst + 8, 0, 8);      memset(dst + n, 0, 8);    }  }}// Does non-template-specific `CordRepExternal` initialization.// Expects `data` to be non-empty.void InitializeCordRepExternal(absl::string_view data, CordRepExternal* rep);// Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer// to it, or `nullptr` if `data` was empty.template <typename Releaser>// NOLINTNEXTLINE - suppress clang-tidy raw pointer return.CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) {  using ReleaserType = absl::decay_t<Releaser>;  if (data.empty()) {    // Never create empty external nodes.    InvokeReleaser(Rank0{}, ReleaserType(std::forward<Releaser>(releaser)),                   data);    return nullptr;  }  CordRepExternal* rep = new CordRepExternalImpl<ReleaserType>(      std::forward<Releaser>(releaser), 0);  InitializeCordRepExternal(data, rep);  return rep;}// Overload for function reference types that dispatches using a function// pointer because there are no `alignof()` or `sizeof()` a function reference.// NOLINTNEXTLINE - suppress clang-tidy raw pointer return.inline CordRep* NewExternalRep(absl::string_view data,                               void (&releaser)(absl::string_view)) {  return NewExternalRep(data, &releaser);}}  // namespace cord_internaltemplate <typename Releaser>Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) {  Cord cord;  cord.contents_.set_tree(::absl::cord_internal::NewExternalRep(      data, std::forward<Releaser>(releaser)));  return cord;}constexpr Cord::InlineRep::InlineRep(cord_internal::InlineData data)    : data_(data) {}inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src) {  data_ = src.data_;}inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) {  data_ = src.data_;  src.ResetToEmpty();}inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) {  if (this == &src) {    return *this;  }  if (!is_tree() && !src.is_tree()) {    data_ = src.data_;    return *this;  }  AssignSlow(src);  return *this;}inline Cord::InlineRep& Cord::InlineRep::operator=(    Cord::InlineRep&& src) noexcept {  if (is_tree()) {    ClearSlow();  }  data_ = src.data_;  src.ResetToEmpty();  return *this;}inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) {  if (rhs == this) {    return;  }  std::swap(data_, rhs->data_);}inline const char* Cord::InlineRep::data() const {  return is_tree() ? nullptr : data_.as_chars;}inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const {  if (is_tree()) {    return data_.as_tree.rep;  } else {    return nullptr;  }}inline bool Cord::InlineRep::empty() const { return tagged_size() == 0; }inline size_t Cord::InlineRep::size() const {  const char tag = tagged_size();  if (tag <= kMaxInline) return tag;  return static_cast<size_t>(tree()->length);}inline void Cord::InlineRep::set_tree(absl::cord_internal::CordRep* rep) {  if (rep == nullptr) {    ResetToEmpty();  } else {    bool was_tree = is_tree();    data_.as_tree = {rep, {}, tagged_size()};    if (!was_tree) {      // If we were not a tree already, set the tag.      // Otherwise, leave it alone because it might have the profile bit on.      set_tagged_size(kTreeFlag);    }  }}inline void Cord::InlineRep::replace_tree(absl::cord_internal::CordRep* rep) {  ABSL_ASSERT(is_tree());  if (ABSL_PREDICT_FALSE(rep == nullptr)) {    set_tree(rep);    return;  }  data_.as_tree = {rep, {}, tagged_size()};}inline absl::cord_internal::CordRep* Cord::InlineRep::clear() {  absl::cord_internal::CordRep* result = tree();  ResetToEmpty();  return result;}inline void Cord::InlineRep::CopyToArray(char* dst) const {  assert(!is_tree());  size_t n = tagged_size();  assert(n != 0);  cord_internal::SmallMemmove(dst, data_.as_chars, n);}constexpr inline Cord::Cord() noexcept {}template <typename T>constexpr Cord::Cord(strings_internal::StringConstant<T>)    : contents_(strings_internal::StringConstant<T>::value.size() <=                        cord_internal::kMaxInline                    ? cord_internal::InlineData(                          strings_internal::StringConstant<T>::value)                    : cord_internal::InlineData(cord_internal::AsTree{                          &cord_internal::ConstInitExternalStorage<                              strings_internal::StringConstant<T>>::value,                          {},                          cord_internal::kTreeFlag})) {}inline Cord& Cord::operator=(const Cord& x) {  contents_ = x.contents_;  return *this;}inline Cord::Cord(Cord&& src) noexcept : contents_(std::move(src.contents_)) {}inline void Cord::swap(Cord& other) noexcept {  contents_.Swap(&other.contents_);}inline Cord& Cord::operator=(Cord&& x) noexcept {  contents_ = std::move(x.contents_);  return *this;}extern template Cord::Cord(std::string&& src);extern template Cord& Cord::operator=(std::string&& src);inline size_t Cord::size() const {  // Length is 1st field in str.rep_  return contents_.size();}inline bool Cord::empty() const { return contents_.empty(); }inline size_t Cord::EstimatedMemoryUsage() const {  size_t result = sizeof(Cord);  if (const absl::cord_internal::CordRep* rep = contents_.tree()) {    result += MemoryUsageAux(rep);  }  return result;}inline absl::optional<absl::string_view> Cord::TryFlat() const {  absl::cord_internal::CordRep* rep = contents_.tree();  if (rep == nullptr) {    return absl::string_view(contents_.data(), contents_.size());  }  absl::string_view fragment;  if (GetFlatAux(rep, &fragment)) {    return fragment;  }  return absl::nullopt;}inline absl::string_view Cord::Flatten() {  absl::cord_internal::CordRep* rep = contents_.tree();  if (rep == nullptr) {    return absl::string_view(contents_.data(), contents_.size());  } else {    absl::string_view already_flat_contents;    if (GetFlatAux(rep, &already_flat_contents)) {      return already_flat_contents;    }  }  return FlattenSlowPath();}inline void Cord::Append(absl::string_view src) {  contents_.AppendArray(src.data(), src.size());}extern template void Cord::Append(std::string&& src);extern template void Cord::Prepend(std::string&& src);inline int Cord::Compare(const Cord& rhs) const {  if (!contents_.is_tree() && !rhs.contents_.is_tree()) {    return contents_.BitwiseCompare(rhs.contents_);  }  return CompareImpl(rhs);}// Does 'this' cord start/end with rhsinline bool Cord::StartsWith(const Cord& rhs) const {  if (contents_.IsSame(rhs.contents_)) return true;  size_t rhs_size = rhs.size();  if (size() < rhs_size) return false;  return EqualsImpl(rhs, rhs_size);}inline bool Cord::StartsWith(absl::string_view rhs) const {  size_t rhs_size = rhs.size();  if (size() < rhs_size) return false;  return EqualsImpl(rhs, rhs_size);}inline Cord::ChunkIterator::ChunkIterator(const Cord* cord)    : bytes_remaining_(cord->size()) {  if (cord->empty()) return;  if (cord->contents_.is_tree()) {    stack_of_right_children_.push_back(cord->contents_.tree());    operator++();  } else {    current_chunk_ = absl::string_view(cord->contents_.data(), cord->size());  }}inline Cord::ChunkIterator& Cord::ChunkIterator::operator++() {  ABSL_HARDENING_ASSERT(bytes_remaining_ > 0 &&                        "Attempted to iterate past `end()`");  assert(bytes_remaining_ >= current_chunk_.size());  bytes_remaining_ -= current_chunk_.size();  if (bytes_remaining_ > 0) {    return AdvanceStack();  } else {    current_chunk_ = {};  }  return *this;}inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) {  ChunkIterator tmp(*this);  operator++();  return tmp;}inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const {  return bytes_remaining_ == other.bytes_remaining_;}inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const {  return !(*this == other);}inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const {  ABSL_HARDENING_ASSERT(bytes_remaining_ != 0);  return current_chunk_;}inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const {  ABSL_HARDENING_ASSERT(bytes_remaining_ != 0);  return ¤t_chunk_;}inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) {  assert(n < current_chunk_.size());  current_chunk_.remove_prefix(n);  bytes_remaining_ -= n;}inline void Cord::ChunkIterator::AdvanceBytes(size_t n) {  if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) {    RemoveChunkPrefix(n);  } else if (n != 0) {    AdvanceBytesSlowPath(n);  }}inline Cord::ChunkIterator Cord::chunk_begin() const {  return ChunkIterator(this);}inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); }inline Cord::ChunkIterator Cord::ChunkRange::begin() const {  return cord_->chunk_begin();}inline Cord::ChunkIterator Cord::ChunkRange::end() const {  return cord_->chunk_end();}inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); }inline Cord::CharIterator& Cord::CharIterator::operator++() {  if (ABSL_PREDICT_TRUE(chunk_iterator_->size() > 1)) {    chunk_iterator_.RemoveChunkPrefix(1);  } else {    ++chunk_iterator_;  }  return *this;}inline Cord::CharIterator Cord::CharIterator::operator++(int) {  CharIterator tmp(*this);  operator++();  return tmp;}inline bool Cord::CharIterator::operator==(const CharIterator& other) const {  return chunk_iterator_ == other.chunk_iterator_;}inline bool Cord::CharIterator::operator!=(const CharIterator& other) const {  return !(*this == other);}inline Cord::CharIterator::reference Cord::CharIterator::operator*() const {  return *chunk_iterator_->data();}inline Cord::CharIterator::pointer Cord::CharIterator::operator->() const {  return chunk_iterator_->data();}inline Cord Cord::AdvanceAndRead(CharIterator* it, size_t n_bytes) {  assert(it != nullptr);  return it->chunk_iterator_.AdvanceAndReadBytes(n_bytes);}inline void Cord::Advance(CharIterator* it, size_t n_bytes) {  assert(it != nullptr);  it->chunk_iterator_.AdvanceBytes(n_bytes);}inline absl::string_view Cord::ChunkRemaining(const CharIterator& it) {  return *it.chunk_iterator_;}inline Cord::CharIterator Cord::char_begin() const {  return CharIterator(this);}inline Cord::CharIterator Cord::char_end() const { return CharIterator(); }inline Cord::CharIterator Cord::CharRange::begin() const {  return cord_->char_begin();}inline Cord::CharIterator Cord::CharRange::end() const {  return cord_->char_end();}inline Cord::CharRange Cord::Chars() const { return CharRange(this); }inline void Cord::ForEachChunk(    absl::FunctionRef<void(absl::string_view)> callback) const {  absl::cord_internal::CordRep* rep = contents_.tree();  if (rep == nullptr) {    callback(absl::string_view(contents_.data(), contents_.size()));  } else {    return ForEachChunkAux(rep, callback);  }}// Nonmember Cord-to-Cord relational operarators.inline bool operator==(const Cord& lhs, const Cord& rhs) {  if (lhs.contents_.IsSame(rhs.contents_)) return true;  size_t rhs_size = rhs.size();  if (lhs.size() != rhs_size) return false;  return lhs.EqualsImpl(rhs, rhs_size);}inline bool operator!=(const Cord& x, const Cord& y) { return !(x == y); }inline bool operator<(const Cord& x, const Cord& y) {  return x.Compare(y) < 0;}inline bool operator>(const Cord& x, const Cord& y) {  return x.Compare(y) > 0;}inline bool operator<=(const Cord& x, const Cord& y) {  return x.Compare(y) <= 0;}inline bool operator>=(const Cord& x, const Cord& y) {  return x.Compare(y) >= 0;}// Nonmember Cord-to-absl::string_view relational operators.//// Due to implicit conversions, these also enable comparisons of Cord with// with std::string, ::string, and const char*.inline bool operator==(const Cord& lhs, absl::string_view rhs) {  size_t lhs_size = lhs.size();  size_t rhs_size = rhs.size();  if (lhs_size != rhs_size) return false;  return lhs.EqualsImpl(rhs, rhs_size);}inline bool operator==(absl::string_view x, const Cord& y) { return y == x; }inline bool operator!=(const Cord& x, absl::string_view y) { return !(x == y); }inline bool operator!=(absl::string_view x, const Cord& y) { return !(x == y); }inline bool operator<(const Cord& x, absl::string_view y) {  return x.Compare(y) < 0;}inline bool operator<(absl::string_view x, const Cord& y) {  return y.Compare(x) > 0;}inline bool operator>(const Cord& x, absl::string_view y) { return y < x; }inline bool operator>(absl::string_view x, const Cord& y) { return y < x; }inline bool operator<=(const Cord& x, absl::string_view y) { return !(y < x); }inline bool operator<=(absl::string_view x, const Cord& y) { return !(y < x); }inline bool operator>=(const Cord& x, absl::string_view y) { return !(x < y); }inline bool operator>=(absl::string_view x, const Cord& y) { return !(x < y); }// Some internals exposed to test code.namespace strings_internal {class CordTestAccess { public:  static size_t FlatOverhead();  static size_t MaxFlatLength();  static size_t SizeofCordRepConcat();  static size_t SizeofCordRepExternal();  static size_t SizeofCordRepSubstring();  static size_t FlatTagToLength(uint8_t tag);  static uint8_t LengthToTag(size_t s);};}  // namespace strings_internalABSL_NAMESPACE_END}  // namespace absl#endif  // ABSL_STRINGS_CORD_H_
 |