| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536 | #region Copyright notice and license// Protocol Buffers - Google's data interchange format// Copyright 2019 Google Inc.  All rights reserved.// https://github.com/protocolbuffers/protobuf//// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:////     * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//     * Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.//     * Neither the name of Google Inc. nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.#endregionusing BenchmarkDotNet.Attributes;using System;using System.Buffers.Binary;using System.Collections.Generic;using System.IO;using System.Buffers;namespace Google.Protobuf.Benchmarks{    /// <summary>    /// Benchmarks throughput when parsing raw primitives.    /// </summary>    [MemoryDiagnoser]    public class ParseRawPrimitivesBenchmark    {        // key is the encodedSize of varint values        Dictionary<int, byte[]> varintInputBuffers;        byte[] doubleInputBuffer;        byte[] floatInputBuffer;        byte[] fixedIntInputBuffer;        // key is the encodedSize of string values        Dictionary<int, byte[]> stringInputBuffers;        Dictionary<int, ReadOnlySequence<byte>> stringInputBuffersSegmented;        Random random = new Random(417384220);  // random but deterministic seed        public IEnumerable<int> StringEncodedSizes => new[] { 1, 4, 10, 105, 10080 };        public IEnumerable<int> StringSegmentedEncodedSizes => new[] { 105, 10080 };        [GlobalSetup]        public void GlobalSetup()        {            // add some extra values that we won't read just to make sure we are far enough from the end of the buffer            // which allows the parser fastpath to always kick in.            const int paddingValueCount = 100;            varintInputBuffers = new Dictionary<int, byte[]>();            for (int encodedSize = 1; encodedSize <= 10; encodedSize++)            {                byte[] buffer = CreateBufferWithRandomVarints(random, BytesToParse / encodedSize, encodedSize, paddingValueCount);                varintInputBuffers.Add(encodedSize, buffer);            }            doubleInputBuffer = CreateBufferWithRandomDoubles(random, BytesToParse / sizeof(double), paddingValueCount);            floatInputBuffer = CreateBufferWithRandomFloats(random, BytesToParse / sizeof(float), paddingValueCount);            fixedIntInputBuffer = CreateBufferWithRandomData(random, BytesToParse / sizeof(long), sizeof(long), paddingValueCount);            stringInputBuffers = new Dictionary<int, byte[]>();            foreach (var encodedSize in StringEncodedSizes)            {                byte[] buffer = CreateBufferWithStrings(BytesToParse / encodedSize, encodedSize, encodedSize < 10 ? 10 : 1 );                stringInputBuffers.Add(encodedSize, buffer);            }            stringInputBuffersSegmented = new Dictionary<int, ReadOnlySequence<byte>>();            foreach (var encodedSize in StringSegmentedEncodedSizes)            {                byte[] buffer = CreateBufferWithStrings(BytesToParse / encodedSize, encodedSize, encodedSize < 10 ? 10 : 1);                stringInputBuffersSegmented.Add(encodedSize, ReadOnlySequenceFactory.CreateWithContent(buffer, segmentSize: 128, addEmptySegmentDelimiters: false));            }        }        // Total number of bytes that each benchmark will parse.        // Measuring the time taken to parse buffer of given size makes it easier to compare parsing speed for different        // types and makes it easy to calculate the througput (in MB/s)        // 10800 bytes is chosen because it is divisible by all possible encoded sizes for all primitive types {1..10}        [Params(10080)]        public int BytesToParse { get; set; }        [Benchmark]        [Arguments(1)]        [Arguments(2)]        [Arguments(3)]        [Arguments(4)]        [Arguments(5)]        public int ParseRawVarint32_CodedInputStream(int encodedSize)        {            CodedInputStream cis = new CodedInputStream(varintInputBuffers[encodedSize]);            int sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {                sum += cis.ReadInt32();            }            return sum;        }        [Benchmark]        [Arguments(1)]        [Arguments(2)]        [Arguments(3)]        [Arguments(4)]        [Arguments(5)]        public int ParseRawVarint32_ParseContext(int encodedSize)        {            InitializeParseContext(varintInputBuffers[encodedSize], out ParseContext ctx);            int sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {                sum += ctx.ReadInt32();            }            return sum;        }        [Benchmark]        [Arguments(1)]        [Arguments(2)]        [Arguments(3)]        [Arguments(4)]        [Arguments(5)]        [Arguments(6)]        [Arguments(7)]        [Arguments(8)]        [Arguments(9)]        [Arguments(10)]        public long ParseRawVarint64_CodedInputStream(int encodedSize)        {            CodedInputStream cis = new CodedInputStream(varintInputBuffers[encodedSize]);            long sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {                sum += cis.ReadInt64();            }            return sum;        }        [Benchmark]        [Arguments(1)]        [Arguments(2)]        [Arguments(3)]        [Arguments(4)]        [Arguments(5)]        [Arguments(6)]        [Arguments(7)]        [Arguments(8)]        [Arguments(9)]        [Arguments(10)]        public long ParseRawVarint64_ParseContext(int encodedSize)        {            InitializeParseContext(varintInputBuffers[encodedSize], out ParseContext ctx);            long sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {                sum += ctx.ReadInt64();            }            return sum;        }        [Benchmark]        public uint ParseFixed32_CodedInputStream()        {            const int encodedSize = sizeof(uint);            CodedInputStream cis = new CodedInputStream(fixedIntInputBuffer);            uint sum = 0;            for (uint i = 0; i < BytesToParse / encodedSize; i++)            {                sum += cis.ReadFixed32();            }            return sum;        }        [Benchmark]        public uint ParseFixed32_ParseContext()        {            const int encodedSize = sizeof(uint);            InitializeParseContext(fixedIntInputBuffer, out ParseContext ctx);            uint sum = 0;            for (uint i = 0; i < BytesToParse / encodedSize; i++)            {                sum += ctx.ReadFixed32();            }            return sum;        }        [Benchmark]        public ulong ParseFixed64_CodedInputStream()        {            const int encodedSize = sizeof(ulong);            CodedInputStream cis = new CodedInputStream(fixedIntInputBuffer);            ulong sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {                sum += cis.ReadFixed64();            }            return sum;        }        [Benchmark]        public ulong ParseFixed64_ParseContext()        {            const int encodedSize = sizeof(ulong);            InitializeParseContext(fixedIntInputBuffer, out ParseContext ctx);            ulong sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {                sum += ctx.ReadFixed64();            }            return sum;        }        [Benchmark]        public float ParseRawFloat_CodedInputStream()        {            const int encodedSize = sizeof(float);            CodedInputStream cis = new CodedInputStream(floatInputBuffer);            float sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {               sum += cis.ReadFloat();            }            return sum;        }        [Benchmark]        public float ParseRawFloat_ParseContext()        {            const int encodedSize = sizeof(float);            InitializeParseContext(floatInputBuffer, out ParseContext ctx);            float sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {               sum += ctx.ReadFloat();            }            return sum;        }        [Benchmark]        public double ParseRawDouble_CodedInputStream()        {            const int encodedSize = sizeof(double);            CodedInputStream cis = new CodedInputStream(doubleInputBuffer);            double sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {                sum += cis.ReadDouble();            }            return sum;        }        [Benchmark]        public double ParseRawDouble_ParseContext()        {            const int encodedSize = sizeof(double);            InitializeParseContext(doubleInputBuffer, out ParseContext ctx);            double sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {                sum += ctx.ReadDouble();            }            return sum;        }        [Benchmark]        [ArgumentsSource(nameof(StringEncodedSizes))]        public int ParseString_CodedInputStream(int encodedSize)        {            CodedInputStream cis = new CodedInputStream(stringInputBuffers[encodedSize]);            int sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {                sum += cis.ReadString().Length;            }            return sum;        }        [Benchmark]        [ArgumentsSource(nameof(StringEncodedSizes))]        public int ParseString_ParseContext(int encodedSize)        {            InitializeParseContext(stringInputBuffers[encodedSize], out ParseContext ctx);            int sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {                sum += ctx.ReadString().Length;            }            return sum;        }        [Benchmark]        [ArgumentsSource(nameof(StringSegmentedEncodedSizes))]        public int ParseString_ParseContext_MultipleSegments(int encodedSize)        {            InitializeParseContext(stringInputBuffersSegmented[encodedSize], out ParseContext ctx);            int sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {                sum += ctx.ReadString().Length;            }            return sum;        }        [Benchmark]        [ArgumentsSource(nameof(StringEncodedSizes))]        public int ParseBytes_CodedInputStream(int encodedSize)        {            CodedInputStream cis = new CodedInputStream(stringInputBuffers[encodedSize]);            int sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {                sum += cis.ReadBytes().Length;            }            return sum;        }        [Benchmark]        [ArgumentsSource(nameof(StringEncodedSizes))]        public int ParseBytes_ParseContext(int encodedSize)        {            InitializeParseContext(stringInputBuffers[encodedSize], out ParseContext ctx);            int sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {                sum += ctx.ReadBytes().Length;            }            return sum;        }        [Benchmark]        [ArgumentsSource(nameof(StringSegmentedEncodedSizes))]        public int ParseBytes_ParseContext_MultipleSegments(int encodedSize)        {            InitializeParseContext(stringInputBuffersSegmented[encodedSize], out ParseContext ctx);            int sum = 0;            for (int i = 0; i < BytesToParse / encodedSize; i++)            {                sum += ctx.ReadBytes().Length;            }            return sum;        }        private static void InitializeParseContext(byte[] buffer, out ParseContext ctx)        {            ParseContext.Initialize(new ReadOnlySequence<byte>(buffer), out ctx);        }        private static void InitializeParseContext(ReadOnlySequence<byte> buffer, out ParseContext ctx)        {            ParseContext.Initialize(buffer, out ctx);        }        private static byte[] CreateBufferWithRandomVarints(Random random, int valueCount, int encodedSize, int paddingValueCount)        {            MemoryStream ms = new MemoryStream();            CodedOutputStream cos = new CodedOutputStream(ms);            for (int i = 0; i < valueCount + paddingValueCount; i++)            {                cos.WriteUInt64(RandomUnsignedVarint(random, encodedSize, false));            }            cos.Flush();            var buffer = ms.ToArray();                        if (buffer.Length != encodedSize * (valueCount + paddingValueCount))            {                throw new InvalidOperationException($"Unexpected output buffer length {buffer.Length}");             }            return buffer;        }        private static byte[] CreateBufferWithRandomFloats(Random random, int valueCount, int paddingValueCount)        {            MemoryStream ms = new MemoryStream();            CodedOutputStream cos = new CodedOutputStream(ms);            for (int i = 0; i < valueCount + paddingValueCount; i++)            {                cos.WriteFloat((float)random.NextDouble());            }            cos.Flush();            var buffer = ms.ToArray();            return buffer;        }        private static byte[] CreateBufferWithRandomDoubles(Random random, int valueCount, int paddingValueCount)        {            MemoryStream ms = new MemoryStream();            CodedOutputStream cos = new CodedOutputStream(ms);            for (int i = 0; i < valueCount + paddingValueCount; i++)            {                cos.WriteDouble(random.NextDouble());            }            cos.Flush();            var buffer = ms.ToArray();            return buffer;        }        private static byte[] CreateBufferWithRandomData(Random random, int valueCount, int encodedSize, int paddingValueCount)        {            int bufferSize = (valueCount + paddingValueCount) * encodedSize;            byte[] buffer = new byte[bufferSize];            random.NextBytes(buffer);            return buffer;        }        /// <summary>        /// Generate a random value that will take exactly "encodedSize" bytes when varint-encoded.        /// </summary>        public static ulong RandomUnsignedVarint(Random random, int encodedSize, bool fitsIn32Bits)        {            Span<byte> randomBytesBuffer = stackalloc byte[8];            if (encodedSize < 1 || encodedSize > 10 || (fitsIn32Bits && encodedSize > 5))            {                throw new ArgumentException("Illegal encodedSize value requested", nameof(encodedSize));            }            const int bitsPerByte = 7;                        ulong result = 0;            while (true)            {                random.NextBytes(randomBytesBuffer);                ulong randomValue = BinaryPrimitives.ReadUInt64LittleEndian(randomBytesBuffer);                // only use the number of random bits we need                ulong bitmask = encodedSize < 10 ? ((1UL << (encodedSize * bitsPerByte)) - 1) : ulong.MaxValue;                result = randomValue & bitmask;                if (fitsIn32Bits)                {                    // make sure the resulting value is representable by a uint.                    result &= uint.MaxValue;                }                if (encodedSize == 10)                {                    // for 10-byte values the highest bit always needs to be set (7*9=63)                    result |= ulong.MaxValue;                    break;                }                // some random values won't require the full "encodedSize" bytes, check that at least                // one of the top 7 bits is set. Retrying is fine since it only happens rarely                if (encodedSize == 1 || (result & (0x7FUL << ((encodedSize - 1) * bitsPerByte))) != 0)                {                    break;                }            }            return result;        }        private static byte[] CreateBufferWithStrings(int valueCount, int encodedSize, int paddingValueCount)        {            var str = CreateStringWithEncodedSize(encodedSize);            MemoryStream ms = new MemoryStream();            CodedOutputStream cos = new CodedOutputStream(ms);            for (int i = 0; i < valueCount + paddingValueCount; i++)            {                cos.WriteString(str);            }            cos.Flush();            var buffer = ms.ToArray();            if (buffer.Length != encodedSize * (valueCount + paddingValueCount))            {                throw new InvalidOperationException($"Unexpected output buffer length {buffer.Length}");            }            return buffer;        }        public static string CreateStringWithEncodedSize(int encodedSize)        {            var str = new string('a', encodedSize);            while (CodedOutputStream.ComputeStringSize(str) > encodedSize)            {                str = str.Substring(1);            }            if (CodedOutputStream.ComputeStringSize(str) != encodedSize)            {                throw new InvalidOperationException($"Generated string with wrong encodedSize");            }            return str;        }        public static string CreateNonAsciiStringWithEncodedSize(int encodedSize)        {            if (encodedSize < 3)            {                throw new ArgumentException("Illegal encoded size for a string with non-ascii chars.");            }            var twoByteChar = '\u00DC';  // U-umlaut, UTF8 encoding has 2 bytes            var str = new string(twoByteChar, encodedSize / 2);            while (CodedOutputStream.ComputeStringSize(str) > encodedSize)            {                str = str.Substring(1);            }            // add padding of ascii characters to reach the desired encoded size.            while (CodedOutputStream.ComputeStringSize(str) < encodedSize)            {                str += 'a';            }            // Note that for a few specific encodedSize values, it might be impossible to generate            // the string with the desired encodedSize using the algorithm above. For testing purposes, checking that            // the encoded size we got is actually correct is good enough.            if (CodedOutputStream.ComputeStringSize(str) != encodedSize)            {                throw new InvalidOperationException($"Generated string with wrong encodedSize");            }            return str;        }    }}
 |