| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991 | // Protocol Buffers - Google's data interchange format// Copyright 2008 Google Inc.  All rights reserved.// https://developers.google.com/protocol-buffers///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:////     * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//     * Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.//     * Neither the name of Google Inc. nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE./** * @fileoverview This file contains helper code used by jspb.BinaryReader * and BinaryWriter. * * @author aappleby@google.com (Austin Appleby) */goog.provide('jspb.utils');goog.require('goog.asserts');goog.require('goog.crypt');goog.require('goog.crypt.base64');goog.require('goog.string');goog.require('jspb.BinaryConstants');/** * Javascript can't natively handle 64-bit data types, so to manipulate them we * have to split them into two 32-bit halves and do the math manually. * * Instead of instantiating and passing small structures around to do this, we * instead just use two global temporary values. This one stores the low 32 * bits of a split value - for example, if the original value was a 64-bit * integer, this temporary value will contain the low 32 bits of that integer. * If the original value was a double, this temporary value will contain the * low 32 bits of the binary representation of that double, etcetera. * @type {number} */jspb.utils.split64Low = 0;/** * And correspondingly, this temporary variable will contain the high 32 bits * of whatever value was split. * @type {number} */jspb.utils.split64High = 0;/** * Splits an unsigned Javascript integer into two 32-bit halves and stores it * in the temp values above. * @param {number} value The number to split. */jspb.utils.splitUint64 = function(value) {  // Extract low 32 bits and high 32 bits as unsigned integers.  var lowBits = value >>> 0;  var highBits = Math.floor((value - lowBits) /                            jspb.BinaryConstants.TWO_TO_32) >>> 0;  jspb.utils.split64Low = lowBits;  jspb.utils.split64High = highBits;};/** * Splits a signed Javascript integer into two 32-bit halves and stores it in * the temp values above. * @param {number} value The number to split. */jspb.utils.splitInt64 = function(value) {  // Convert to sign-magnitude representation.  var sign = (value < 0);  value = Math.abs(value);  // Extract low 32 bits and high 32 bits as unsigned integers.  var lowBits = value >>> 0;  var highBits = Math.floor((value - lowBits) /                            jspb.BinaryConstants.TWO_TO_32);  highBits = highBits >>> 0;  // Perform two's complement conversion if the sign bit was set.  if (sign) {    highBits = ~highBits >>> 0;    lowBits = ~lowBits >>> 0;    lowBits += 1;    if (lowBits > 0xFFFFFFFF) {      lowBits = 0;      highBits++;      if (highBits > 0xFFFFFFFF) highBits = 0;    }  }  jspb.utils.split64Low = lowBits;  jspb.utils.split64High = highBits;};/** * Convers a signed Javascript integer into zigzag format, splits it into two * 32-bit halves, and stores it in the temp values above. * @param {number} value The number to split. */jspb.utils.splitZigzag64 = function(value) {  // Convert to sign-magnitude and scale by 2 before we split the value.  var sign = (value < 0);  value = Math.abs(value) * 2;  jspb.utils.splitUint64(value);  var lowBits = jspb.utils.split64Low;  var highBits = jspb.utils.split64High;  // If the value is negative, subtract 1 from the split representation so we  // don't lose the sign bit due to precision issues.  if (sign) {    if (lowBits == 0) {      if (highBits == 0) {        lowBits = 0xFFFFFFFF;        highBits = 0xFFFFFFFF;      } else {        highBits--;        lowBits = 0xFFFFFFFF;      }    } else {      lowBits--;    }  }  jspb.utils.split64Low = lowBits;  jspb.utils.split64High = highBits;};/** * Converts a floating-point number into 32-bit IEEE representation and stores * it in the temp values above. * @param {number} value */jspb.utils.splitFloat32 = function(value) {  var sign = (value < 0) ? 1 : 0;  value = sign ? -value : value;  var exp;  var mant;  // Handle zeros.  if (value === 0) {    if ((1 / value) > 0) {      // Positive zero.      jspb.utils.split64High = 0;      jspb.utils.split64Low = 0x00000000;    } else {      // Negative zero.      jspb.utils.split64High = 0;      jspb.utils.split64Low = 0x80000000;    }    return;  }  // Handle nans.  if (isNaN(value)) {    jspb.utils.split64High = 0;    jspb.utils.split64Low = 0x7FFFFFFF;    return;  }  // Handle infinities.  if (value > jspb.BinaryConstants.FLOAT32_MAX) {    jspb.utils.split64High = 0;    jspb.utils.split64Low = ((sign << 31) | (0x7F800000)) >>> 0;    return;  }  // Handle denormals.  if (value < jspb.BinaryConstants.FLOAT32_MIN) {    // Number is a denormal.    mant = Math.round(value / Math.pow(2, -149));    jspb.utils.split64High = 0;    jspb.utils.split64Low = ((sign << 31) | mant) >>> 0;    return;  }  exp = Math.floor(Math.log(value) / Math.LN2);  mant = value * Math.pow(2, -exp);  mant = Math.round(mant * jspb.BinaryConstants.TWO_TO_23) & 0x7FFFFF;  jspb.utils.split64High = 0;  jspb.utils.split64Low = ((sign << 31) | ((exp + 127) << 23) | mant) >>> 0;};/** * Converts a floating-point number into 64-bit IEEE representation and stores * it in the temp values above. * @param {number} value */jspb.utils.splitFloat64 = function(value) {  var sign = (value < 0) ? 1 : 0;  value = sign ? -value : value;  // Handle zeros.  if (value === 0) {    if ((1 / value) > 0) {      // Positive zero.      jspb.utils.split64High = 0x00000000;      jspb.utils.split64Low = 0x00000000;    } else {      // Negative zero.      jspb.utils.split64High = 0x80000000;      jspb.utils.split64Low = 0x00000000;    }    return;  }  // Handle nans.  if (isNaN(value)) {    jspb.utils.split64High = 0x7FFFFFFF;    jspb.utils.split64Low = 0xFFFFFFFF;    return;  }  // Handle infinities.  if (value > jspb.BinaryConstants.FLOAT64_MAX) {    jspb.utils.split64High = ((sign << 31) | (0x7FF00000)) >>> 0;    jspb.utils.split64Low = 0;    return;  }  // Handle denormals.  if (value < jspb.BinaryConstants.FLOAT64_MIN) {    // Number is a denormal.    var mant = value / Math.pow(2, -1074);    var mantHigh = (mant / jspb.BinaryConstants.TWO_TO_32);    jspb.utils.split64High = ((sign << 31) | mantHigh) >>> 0;    jspb.utils.split64Low = (mant >>> 0);    return;  }  var exp = Math.floor(Math.log(value) / Math.LN2);  if (exp == 1024) exp = 1023;  var mant = value * Math.pow(2, -exp);  var mantHigh = (mant * jspb.BinaryConstants.TWO_TO_20) & 0xFFFFF;  var mantLow = (mant * jspb.BinaryConstants.TWO_TO_52) >>> 0;  jspb.utils.split64High =      ((sign << 31) | ((exp + 1023) << 20) | mantHigh) >>> 0;  jspb.utils.split64Low = mantLow;};/** * Converts an 8-character hash string into two 32-bit numbers and stores them * in the temp values above. * @param {string} hash */jspb.utils.splitHash64 = function(hash) {  var a = hash.charCodeAt(0);  var b = hash.charCodeAt(1);  var c = hash.charCodeAt(2);  var d = hash.charCodeAt(3);  var e = hash.charCodeAt(4);  var f = hash.charCodeAt(5);  var g = hash.charCodeAt(6);  var h = hash.charCodeAt(7);  jspb.utils.split64Low = (a + (b << 8) + (c << 16) + (d << 24)) >>> 0;  jspb.utils.split64High = (e + (f << 8) + (g << 16) + (h << 24)) >>> 0;};/** * Joins two 32-bit values into a 64-bit unsigned integer. Precision will be * lost if the result is greater than 2^52. * @param {number} bitsLow * @param {number} bitsHigh * @return {number} */jspb.utils.joinUint64 = function(bitsLow, bitsHigh) {  return bitsHigh * jspb.BinaryConstants.TWO_TO_32 + bitsLow;};/** * Joins two 32-bit values into a 64-bit signed integer. Precision will be lost * if the result is greater than 2^52. * @param {number} bitsLow * @param {number} bitsHigh * @return {number} */jspb.utils.joinInt64 = function(bitsLow, bitsHigh) {  // If the high bit is set, do a manual two's complement conversion.  var sign = (bitsHigh & 0x80000000);  if (sign) {    bitsLow = (~bitsLow + 1) >>> 0;    bitsHigh = ~bitsHigh >>> 0;    if (bitsLow == 0) {      bitsHigh = (bitsHigh + 1) >>> 0;    }  }  var result = jspb.utils.joinUint64(bitsLow, bitsHigh);  return sign ? -result : result;};/** * Joins two 32-bit values into a 64-bit unsigned integer and applies zigzag * decoding. Precision will be lost if the result is greater than 2^52. * @param {number} bitsLow * @param {number} bitsHigh * @return {number} */jspb.utils.joinZigzag64 = function(bitsLow, bitsHigh) {  // Extract the sign bit and shift right by one.  var sign = bitsLow & 1;  bitsLow = ((bitsLow >>> 1) | (bitsHigh << 31)) >>> 0;  bitsHigh = bitsHigh >>> 1;  // Increment the split value if the sign bit was set.  if (sign) {    bitsLow = (bitsLow + 1) >>> 0;    if (bitsLow == 0) {      bitsHigh = (bitsHigh + 1) >>> 0;    }  }  var result = jspb.utils.joinUint64(bitsLow, bitsHigh);  return sign ? -result : result;};/** * Joins two 32-bit values into a 32-bit IEEE floating point number and * converts it back into a Javascript number. * @param {number} bitsLow The low 32 bits of the binary number; * @param {number} bitsHigh The high 32 bits of the binary number. * @return {number} */jspb.utils.joinFloat32 = function(bitsLow, bitsHigh) {  var sign = ((bitsLow >> 31) * 2 + 1);  var exp = (bitsLow >>> 23) & 0xFF;  var mant = bitsLow & 0x7FFFFF;  if (exp == 0xFF) {    if (mant) {      return NaN;    } else {      return sign * Infinity;    }  }  if (exp == 0) {    // Denormal.    return sign * Math.pow(2, -149) * mant;  } else {    return sign * Math.pow(2, exp - 150) *           (mant + Math.pow(2, 23));  }};/** * Joins two 32-bit values into a 64-bit IEEE floating point number and * converts it back into a Javascript number. * @param {number} bitsLow The low 32 bits of the binary number; * @param {number} bitsHigh The high 32 bits of the binary number. * @return {number} */jspb.utils.joinFloat64 = function(bitsLow, bitsHigh) {  var sign = ((bitsHigh >> 31) * 2 + 1);  var exp = (bitsHigh >>> 20) & 0x7FF;  var mant = jspb.BinaryConstants.TWO_TO_32 * (bitsHigh & 0xFFFFF) + bitsLow;  if (exp == 0x7FF) {    if (mant) {      return NaN;    } else {      return sign * Infinity;    }  }  if (exp == 0) {    // Denormal.    return sign * Math.pow(2, -1074) * mant;  } else {    return sign * Math.pow(2, exp - 1075) *           (mant + jspb.BinaryConstants.TWO_TO_52);  }};/** * Joins two 32-bit values into an 8-character hash string. * @param {number} bitsLow * @param {number} bitsHigh * @return {string} */jspb.utils.joinHash64 = function(bitsLow, bitsHigh) {  var a = (bitsLow >>> 0) & 0xFF;  var b = (bitsLow >>> 8) & 0xFF;  var c = (bitsLow >>> 16) & 0xFF;  var d = (bitsLow >>> 24) & 0xFF;  var e = (bitsHigh >>> 0) & 0xFF;  var f = (bitsHigh >>> 8) & 0xFF;  var g = (bitsHigh >>> 16) & 0xFF;  var h = (bitsHigh >>> 24) & 0xFF;  return String.fromCharCode(a, b, c, d, e, f, g, h);};/** * Individual digits for number->string conversion. * @const {!Array<string>} */jspb.utils.DIGITS = [  '0', '1', '2', '3', '4', '5', '6', '7',  '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'];/** * Losslessly converts a 64-bit unsigned integer in 32:32 split representation * into a decimal string. * @param {number} bitsLow The low 32 bits of the binary number; * @param {number} bitsHigh The high 32 bits of the binary number. * @return {string} The binary number represented as a string. */jspb.utils.joinUnsignedDecimalString = function(bitsLow, bitsHigh) {  // Skip the expensive conversion if the number is small enough to use the  // built-in conversions.  if (bitsHigh <= 0x1FFFFF) {    return '' + (jspb.BinaryConstants.TWO_TO_32 * bitsHigh + bitsLow);  }  // What this code is doing is essentially converting the input number from  // base-2 to base-1e7, which allows us to represent the 64-bit range with  // only 3 (very large) digits. Those digits are then trivial to convert to  // a base-10 string.  // The magic numbers used here are -  // 2^24 = 16777216 = (1,6777216) in base-1e7.  // 2^48 = 281474976710656 = (2,8147497,6710656) in base-1e7.  // Split 32:32 representation into 16:24:24 representation so our  // intermediate digits don't overflow.  var low = bitsLow & 0xFFFFFF;  var mid = (((bitsLow >>> 24) | (bitsHigh << 8)) >>> 0) & 0xFFFFFF;  var high = (bitsHigh >> 16) & 0xFFFF;  // Assemble our three base-1e7 digits, ignoring carries. The maximum  // value in a digit at this step is representable as a 48-bit integer, which  // can be stored in a 64-bit floating point number.  var digitA = low + (mid * 6777216) + (high * 6710656);  var digitB = mid + (high * 8147497);  var digitC = (high * 2);  // Apply carries from A to B and from B to C.  var base = 10000000;  if (digitA >= base) {    digitB += Math.floor(digitA / base);    digitA %= base;  }  if (digitB >= base) {    digitC += Math.floor(digitB / base);    digitB %= base;  }  // Convert base-1e7 digits to base-10, omitting leading zeroes.  var table = jspb.utils.DIGITS;  var start = false;  var result = '';  function emit(digit) {    var temp = base;    for (var i = 0; i < 7; i++) {      temp /= 10;      var decimalDigit = ((digit / temp) % 10) >>> 0;      if ((decimalDigit == 0) && !start) continue;      start = true;      result += table[decimalDigit];    }  }  if (digitC || start) emit(digitC);  if (digitB || start) emit(digitB);  if (digitA || start) emit(digitA);  return result;};/** * Losslessly converts a 64-bit signed integer in 32:32 split representation * into a decimal string. * @param {number} bitsLow The low 32 bits of the binary number; * @param {number} bitsHigh The high 32 bits of the binary number. * @return {string} The binary number represented as a string. */jspb.utils.joinSignedDecimalString = function(bitsLow, bitsHigh) {  // If we're treating the input as a signed value and the high bit is set, do  // a manual two's complement conversion before the decimal conversion.  var negative = (bitsHigh & 0x80000000);  if (negative) {    bitsLow = (~bitsLow + 1) >>> 0;    var carry = (bitsLow == 0) ? 1 : 0;    bitsHigh = (~bitsHigh + carry) >>> 0;  }  var result = jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh);  return negative ? '-' + result : result;};/** * Convert an 8-character hash string representing either a signed or unsigned * 64-bit integer into its decimal representation without losing accuracy. * @param {string} hash The hash string to convert. * @param {boolean} signed True if we should treat the hash string as encoding *     a signed integer. * @return {string} */jspb.utils.hash64ToDecimalString = function(hash, signed) {  jspb.utils.splitHash64(hash);  var bitsLow = jspb.utils.split64Low;  var bitsHigh = jspb.utils.split64High;  return signed ?      jspb.utils.joinSignedDecimalString(bitsLow, bitsHigh) :      jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh);};/** * Converts an array of 8-character hash strings into their decimal * representations. * @param {!Array<string>} hashes The array of hash strings to convert. * @param {boolean} signed True if we should treat the hash string as encoding *     a signed integer. * @return {!Array<string>} */jspb.utils.hash64ArrayToDecimalStrings = function(hashes, signed) {  var result = new Array(hashes.length);  for (var i = 0; i < hashes.length; i++) {    result[i] = jspb.utils.hash64ToDecimalString(hashes[i], signed);  }  return result;};/** * Converts a signed or unsigned decimal string into its hash string * representation. * @param {string} dec * @return {string} */jspb.utils.decimalStringToHash64 = function(dec) {  goog.asserts.assert(dec.length > 0);  // Check for minus sign.  var minus = false;  if (dec[0] === '-') {    minus = true;    dec = dec.slice(1);  }  // Store result as a byte array.  var resultBytes = [0, 0, 0, 0, 0, 0, 0, 0];  // Set result to m*result + c.  function muladd(m, c) {    for (var i = 0; i < 8 && (m !== 1 || c > 0); i++) {      var r = m * resultBytes[i] + c;      resultBytes[i] = r & 0xFF;      c = r >>> 8;    }  }  // Negate the result bits.  function neg() {    for (var i = 0; i < 8; i++) {      resultBytes[i] = (~resultBytes[i]) & 0xFF;    }  }  // For each decimal digit, set result to 10*result + digit.  for (var i = 0; i < dec.length; i++) {    muladd(10, jspb.utils.DIGITS.indexOf(dec[i]));  }  // If there's a minus sign, convert into two's complement.  if (minus) {    neg();    muladd(1, 1);  }  return goog.crypt.byteArrayToString(resultBytes);};/** * Converts a signed or unsigned decimal string into two 32-bit halves, and * stores them in the temp variables listed above. * @param {string} value The decimal string to convert. */jspb.utils.splitDecimalString = function(value) {  jspb.utils.splitHash64(jspb.utils.decimalStringToHash64(value));};/** * Converts an 8-character hash string into its hexadecimal representation. * @param {string} hash * @return {string} */jspb.utils.hash64ToHexString = function(hash) {  var temp = new Array(18);  temp[0] = '0';  temp[1] = 'x';  for (var i = 0; i < 8; i++) {    var c = hash.charCodeAt(7 - i);    temp[i * 2 + 2] = jspb.utils.DIGITS[c >> 4];    temp[i * 2 + 3] = jspb.utils.DIGITS[c & 0xF];  }  var result = temp.join('');  return result;};/** * Converts a '0x<16 digits>' hex string into its hash string representation. * @param {string} hex * @return {string} */jspb.utils.hexStringToHash64 = function(hex) {  hex = hex.toLowerCase();  goog.asserts.assert(hex.length == 18);  goog.asserts.assert(hex[0] == '0');  goog.asserts.assert(hex[1] == 'x');  var result = '';  for (var i = 0; i < 8; i++) {    var hi = jspb.utils.DIGITS.indexOf(hex[i * 2 + 2]);    var lo = jspb.utils.DIGITS.indexOf(hex[i * 2 + 3]);    result = String.fromCharCode(hi * 16 + lo) + result;  }  return result;};/** * Convert an 8-character hash string representing either a signed or unsigned * 64-bit integer into a Javascript number. Will lose accuracy if the result is * larger than 2^52. * @param {string} hash The hash string to convert. * @param {boolean} signed True if the has should be interpreted as a signed *     number. * @return {number} */jspb.utils.hash64ToNumber = function(hash, signed) {  jspb.utils.splitHash64(hash);  var bitsLow = jspb.utils.split64Low;  var bitsHigh = jspb.utils.split64High;  return signed ? jspb.utils.joinInt64(bitsLow, bitsHigh) :                  jspb.utils.joinUint64(bitsLow, bitsHigh);};/** * Convert a Javascript number into an 8-character hash string. Will lose * precision if the value is non-integral or greater than 2^64. * @param {number} value The integer to convert. * @return {string} */jspb.utils.numberToHash64 = function(value) {  jspb.utils.splitInt64(value);  return jspb.utils.joinHash64(jspb.utils.split64Low,                                  jspb.utils.split64High);};/** * Counts the number of contiguous varints in a buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @return {number} The number of varints in the buffer. */jspb.utils.countVarints = function(buffer, start, end) {  // Count how many high bits of each byte were set in the buffer.  var count = 0;  for (var i = start; i < end; i++) {    count += buffer[i] >> 7;  }  // The number of varints in the buffer equals the size of the buffer minus  // the number of non-terminal bytes in the buffer (those with the high bit  // set).  return (end - start) - count;};/** * Counts the number of contiguous varint fields with the given field number in * the buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} field The field number to count. * @return {number} The number of matching fields in the buffer. */jspb.utils.countVarintFields = function(buffer, start, end, field) {  var count = 0;  var cursor = start;  var tag = field * 8 + jspb.BinaryConstants.WireType.VARINT;  if (tag < 128) {    // Single-byte field tag, we can use a slightly quicker count.    while (cursor < end) {      // Skip the field tag, or exit if we find a non-matching tag.      if (buffer[cursor++] != tag) return count;      // Field tag matches, we've found a valid field.      count++;      // Skip the varint.      while (1) {        var x = buffer[cursor++];        if ((x & 0x80) == 0) break;      }    }  } else {    while (cursor < end) {      // Skip the field tag, or exit if we find a non-matching tag.      var temp = tag;      while (temp > 128) {        if (buffer[cursor] != ((temp & 0x7F) | 0x80)) return count;        cursor++;        temp >>= 7;      }      if (buffer[cursor++] != temp) return count;      // Field tag matches, we've found a valid field.      count++;      // Skip the varint.      while (1) {        var x = buffer[cursor++];        if ((x & 0x80) == 0) break;      }    }  }  return count;};/** * Counts the number of contiguous fixed32 fields with the given tag in the * buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} tag The tag value to count. * @param {number} stride The number of bytes to skip per field. * @return {number} The number of fields with a matching tag in the buffer. * @private */jspb.utils.countFixedFields_ =    function(buffer, start, end, tag, stride) {  var count = 0;  var cursor = start;  if (tag < 128) {    // Single-byte field tag, we can use a slightly quicker count.    while (cursor < end) {      // Skip the field tag, or exit if we find a non-matching tag.      if (buffer[cursor++] != tag) return count;      // Field tag matches, we've found a valid field.      count++;      // Skip the value.      cursor += stride;    }  } else {    while (cursor < end) {      // Skip the field tag, or exit if we find a non-matching tag.      var temp = tag;      while (temp > 128) {        if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count;        temp >>= 7;      }      if (buffer[cursor++] != temp) return count;      // Field tag matches, we've found a valid field.      count++;      // Skip the value.      cursor += stride;    }  }  return count;};/** * Counts the number of contiguous fixed32 fields with the given field number * in the buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} field The field number to count. * @return {number} The number of matching fields in the buffer. */jspb.utils.countFixed32Fields = function(buffer, start, end, field) {  var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED32;  return jspb.utils.countFixedFields_(buffer, start, end, tag, 4);};/** * Counts the number of contiguous fixed64 fields with the given field number * in the buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} field The field number to count * @return {number} The number of matching fields in the buffer. */jspb.utils.countFixed64Fields = function(buffer, start, end, field) {  var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED64;  return jspb.utils.countFixedFields_(buffer, start, end, tag, 8);};/** * Counts the number of contiguous delimited fields with the given field number * in the buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} field The field number to count. * @return {number} The number of matching fields in the buffer. */jspb.utils.countDelimitedFields = function(buffer, start, end, field) {  var count = 0;  var cursor = start;  var tag = field * 8 + jspb.BinaryConstants.WireType.DELIMITED;  while (cursor < end) {    // Skip the field tag, or exit if we find a non-matching tag.    var temp = tag;    while (temp > 128) {      if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count;      temp >>= 7;    }    if (buffer[cursor++] != temp) return count;    // Field tag matches, we've found a valid field.    count++;    // Decode the length prefix.    var length = 0;    var shift = 1;    while (1) {      temp = buffer[cursor++];      length += (temp & 0x7f) * shift;      shift *= 128;      if ((temp & 0x80) == 0) break;    }    // Advance the cursor past the blob.    cursor += length;  }  return count;};/** * String-ify bytes for text format. Should be optimized away in non-debug. * The returned string uses \xXX escapes for all values and is itself quoted. * [1, 31] serializes to '"\x01\x1f"'. * @param {jspb.ByteSource} byteSource The bytes to serialize. * @return {string} Stringified bytes for text format. */jspb.utils.debugBytesToTextFormat = function(byteSource) {  var s = '"';  if (byteSource) {    var bytes = jspb.utils.byteSourceToUint8Array(byteSource);    for (var i = 0; i < bytes.length; i++) {      s += '\\x';      if (bytes[i] < 16) s += '0';      s += bytes[i].toString(16);    }  }  return s + '"';};/** * String-ify a scalar for text format. Should be optimized away in non-debug. * @param {string|number|boolean} scalar The scalar to stringify. * @return {string} Stringified scalar for text format. */jspb.utils.debugScalarToTextFormat = function(scalar) {  if (goog.isString(scalar)) {    return goog.string.quote(scalar);  } else {    return scalar.toString();  }};/** * Utility function: convert a string with codepoints 0--255 inclusive to a * Uint8Array. If any codepoints greater than 255 exist in the string, throws an * exception. * @param {string} str * @return {!Uint8Array} */jspb.utils.stringToByteArray = function(str) {  var arr = new Uint8Array(str.length);  for (var i = 0; i < str.length; i++) {    var codepoint = str.charCodeAt(i);    if (codepoint > 255) {      throw new Error('Conversion error: string contains codepoint ' +                      'outside of byte range');    }    arr[i] = codepoint;  }  return arr;};/** * Converts any type defined in jspb.ByteSource into a Uint8Array. * @param {!jspb.ByteSource} data * @return {!Uint8Array} * @suppress {invalidCasts} */jspb.utils.byteSourceToUint8Array = function(data) {  if (data.constructor === Uint8Array) {    return /** @type {!Uint8Array} */(data);  }  if (data.constructor === ArrayBuffer) {    data = /** @type {!ArrayBuffer} */(data);    return /** @type {!Uint8Array} */(new Uint8Array(data));  }  if (typeof Buffer != 'undefined' && data.constructor === Buffer) {    return /** @type {!Uint8Array} */ (        new Uint8Array(/** @type {?} */ (data)));   }  if (data.constructor === Array) {    data = /** @type {!Array<number>} */(data);    return /** @type {!Uint8Array} */(new Uint8Array(data));  }  if (data.constructor === String) {    data = /** @type {string} */(data);    return goog.crypt.base64.decodeStringToUint8Array(data);  }  goog.asserts.fail('Type not convertible to Uint8Array.');  return /** @type {!Uint8Array} */(new Uint8Array(0));};
 |