encode_decode.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551
  1. // Protocol Buffers - Google's data interchange format
  2. // Copyright 2014 Google Inc. All rights reserved.
  3. // https://developers.google.com/protocol-buffers/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are
  7. // met:
  8. //
  9. // * Redistributions of source code must retain the above copyright
  10. // notice, this list of conditions and the following disclaimer.
  11. // * Redistributions in binary form must reproduce the above
  12. // copyright notice, this list of conditions and the following disclaimer
  13. // in the documentation and/or other materials provided with the
  14. // distribution.
  15. // * Neither the name of Google Inc. nor the names of its
  16. // contributors may be used to endorse or promote products derived from
  17. // this software without specific prior written permission.
  18. //
  19. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  20. // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  21. // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  22. // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  23. // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  24. // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  25. // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  26. // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  27. // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  28. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  29. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30. #include "protobuf.h"
  31. // This function is equivalent to rb_str_cat(), but unlike the real
  32. // rb_str_cat(), it doesn't leak memory in some versions of Ruby.
  33. // For more information, see:
  34. // https://bugs.ruby-lang.org/issues/11328
  35. VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) {
  36. char *p;
  37. size_t oldlen = RSTRING_LEN(rb_str);
  38. rb_str_modify_expand(rb_str, len);
  39. p = RSTRING_PTR(rb_str);
  40. memcpy(p + oldlen, str, len);
  41. rb_str_set_len(rb_str, oldlen + len);
  42. return rb_str;
  43. }
  44. // The code below also comes from upb's prototype Ruby binding, developed by
  45. // haberman@.
  46. /* stringsink *****************************************************************/
  47. static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {
  48. stringsink *sink = _sink;
  49. sink->len = 0;
  50. return sink;
  51. }
  52. static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,
  53. size_t len, const upb_bufhandle *handle) {
  54. stringsink *sink = _sink;
  55. size_t new_size = sink->size;
  56. UPB_UNUSED(hd);
  57. UPB_UNUSED(handle);
  58. while (sink->len + len > new_size) {
  59. new_size *= 2;
  60. }
  61. if (new_size != sink->size) {
  62. sink->ptr = realloc(sink->ptr, new_size);
  63. sink->size = new_size;
  64. }
  65. memcpy(sink->ptr + sink->len, ptr, len);
  66. sink->len += len;
  67. return len;
  68. }
  69. void stringsink_init(stringsink *sink) {
  70. upb_byteshandler_init(&sink->handler);
  71. upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);
  72. upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);
  73. upb_bytessink_reset(&sink->sink, &sink->handler, sink);
  74. sink->size = 32;
  75. sink->ptr = malloc(sink->size);
  76. sink->len = 0;
  77. }
  78. void stringsink_uninit(stringsink *sink) {
  79. free(sink->ptr);
  80. }
  81. // -----------------------------------------------------------------------------
  82. // Parsing.
  83. // -----------------------------------------------------------------------------
  84. #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs)
  85. typedef struct {
  86. size_t ofs;
  87. int32_t hasbit;
  88. } field_handlerdata_t;
  89. // Creates a handlerdata that contains the offset and the hasbit for the field
  90. static const void* newhandlerdata(upb_handlers* h, uint32_t ofs, int32_t hasbit) {
  91. field_handlerdata_t *hd = ALLOC(field_handlerdata_t);
  92. hd->ofs = ofs;
  93. hd->hasbit = hasbit;
  94. upb_handlers_addcleanup(h, hd, xfree);
  95. return hd;
  96. }
  97. typedef struct {
  98. size_t ofs;
  99. int32_t hasbit;
  100. VALUE subklass;
  101. } submsg_handlerdata_t;
  102. // Creates a handlerdata that contains offset and submessage type information.
  103. static const void *newsubmsghandlerdata(upb_handlers* h,
  104. uint32_t ofs,
  105. int32_t hasbit,
  106. VALUE subklass) {
  107. submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t);
  108. hd->ofs = ofs;
  109. hd->hasbit = hasbit;
  110. hd->subklass = subklass;
  111. upb_handlers_addcleanup(h, hd, xfree);
  112. return hd;
  113. }
  114. typedef struct {
  115. size_t ofs; // union data slot
  116. size_t case_ofs; // oneof_case field
  117. uint32_t oneof_case_num; // oneof-case number to place in oneof_case field
  118. VALUE subklass;
  119. } oneof_handlerdata_t;
  120. static const void *newoneofhandlerdata(upb_handlers *h,
  121. uint32_t ofs,
  122. uint32_t case_ofs,
  123. const upb_fielddef *f,
  124. const Descriptor* desc) {
  125. oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t);
  126. hd->ofs = ofs;
  127. hd->case_ofs = case_ofs;
  128. // We reuse the field tag number as a oneof union discriminant tag. Note that
  129. // we don't expose these numbers to the user, so the only requirement is that
  130. // we have some unique ID for each union case/possibility. The field tag
  131. // numbers are already present and are easy to use so there's no reason to
  132. // create a separate ID space. In addition, using the field tag number here
  133. // lets us easily look up the field in the oneof accessor.
  134. hd->oneof_case_num = upb_fielddef_number(f);
  135. if (is_value_field(f)) {
  136. hd->oneof_case_num |= ONEOF_CASE_MASK;
  137. }
  138. hd->subklass = field_type_class(desc->layout, f);
  139. upb_handlers_addcleanup(h, hd, xfree);
  140. return hd;
  141. }
  142. // A handler that starts a repeated field. Gets the Repeated*Field instance for
  143. // this field (such an instance always exists even in an empty message).
  144. static void *startseq_handler(void* closure, const void* hd) {
  145. MessageHeader* msg = closure;
  146. const size_t *ofs = hd;
  147. return (void*)DEREF(msg, *ofs, VALUE);
  148. }
  149. // Handlers that append primitive values to a repeated field.
  150. #define DEFINE_APPEND_HANDLER(type, ctype) \
  151. static bool append##type##_handler(void *closure, const void *hd, \
  152. ctype val) { \
  153. VALUE ary = (VALUE)closure; \
  154. RepeatedField_push_native(ary, &val); \
  155. return true; \
  156. }
  157. DEFINE_APPEND_HANDLER(bool, bool)
  158. DEFINE_APPEND_HANDLER(int32, int32_t)
  159. DEFINE_APPEND_HANDLER(uint32, uint32_t)
  160. DEFINE_APPEND_HANDLER(float, float)
  161. DEFINE_APPEND_HANDLER(int64, int64_t)
  162. DEFINE_APPEND_HANDLER(uint64, uint64_t)
  163. DEFINE_APPEND_HANDLER(double, double)
  164. // Appends a string to a repeated field.
  165. static void* appendstr_handler(void *closure,
  166. const void *hd,
  167. size_t size_hint) {
  168. VALUE ary = (VALUE)closure;
  169. VALUE str = rb_str_new2("");
  170. rb_enc_associate(str, kRubyStringUtf8Encoding);
  171. RepeatedField_push_native(ary, &str);
  172. return (void*)str;
  173. }
  174. static void set_hasbit(void *closure, int32_t hasbit) {
  175. if (hasbit > 0) {
  176. uint8_t* storage = closure;
  177. storage[hasbit/8] |= 1 << (hasbit % 8);
  178. }
  179. }
  180. // Appends a 'bytes' string to a repeated field.
  181. static void* appendbytes_handler(void *closure,
  182. const void *hd,
  183. size_t size_hint) {
  184. VALUE ary = (VALUE)closure;
  185. VALUE str = rb_str_new2("");
  186. rb_enc_associate(str, kRubyString8bitEncoding);
  187. RepeatedField_push_native(ary, &str);
  188. return (void*)str;
  189. }
  190. // Sets a non-repeated string field in a message.
  191. static void* str_handler(void *closure,
  192. const void *hd,
  193. size_t size_hint) {
  194. MessageHeader* msg = closure;
  195. const field_handlerdata_t *fieldhandler = hd;
  196. VALUE str = rb_str_new2("");
  197. rb_enc_associate(str, kRubyStringUtf8Encoding);
  198. DEREF(msg, fieldhandler->ofs, VALUE) = str;
  199. set_hasbit(closure, fieldhandler->hasbit);
  200. return (void*)str;
  201. }
  202. // Sets a non-repeated 'bytes' field in a message.
  203. static void* bytes_handler(void *closure,
  204. const void *hd,
  205. size_t size_hint) {
  206. MessageHeader* msg = closure;
  207. const field_handlerdata_t *fieldhandler = hd;
  208. VALUE str = rb_str_new2("");
  209. rb_enc_associate(str, kRubyString8bitEncoding);
  210. DEREF(msg, fieldhandler->ofs, VALUE) = str;
  211. set_hasbit(closure, fieldhandler->hasbit);
  212. return (void*)str;
  213. }
  214. static size_t stringdata_handler(void* closure, const void* hd,
  215. const char* str, size_t len,
  216. const upb_bufhandle* handle) {
  217. VALUE rb_str = (VALUE)closure;
  218. noleak_rb_str_cat(rb_str, str, len);
  219. return len;
  220. }
  221. static bool stringdata_end_handler(void* closure, const void* hd) {
  222. VALUE rb_str = (VALUE)closure;
  223. rb_obj_freeze(rb_str);
  224. return true;
  225. }
  226. static bool appendstring_end_handler(void* closure, const void* hd) {
  227. VALUE rb_str = (VALUE)closure;
  228. rb_obj_freeze(rb_str);
  229. return true;
  230. }
  231. // Appends a submessage to a repeated field (a regular Ruby array for now).
  232. static void *appendsubmsg_handler(void *closure, const void *hd) {
  233. VALUE ary = (VALUE)closure;
  234. const submsg_handlerdata_t *submsgdata = hd;
  235. MessageHeader* submsg;
  236. VALUE submsg_rb = rb_class_new_instance(0, NULL, submsgdata->subklass);
  237. RepeatedField_push(ary, submsg_rb);
  238. TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
  239. return submsg;
  240. }
  241. // Sets a non-repeated submessage field in a message.
  242. static void *submsg_handler(void *closure, const void *hd) {
  243. MessageHeader* msg = closure;
  244. const submsg_handlerdata_t* submsgdata = hd;
  245. VALUE submsg_rb;
  246. MessageHeader* submsg;
  247. if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) {
  248. DEREF(msg, submsgdata->ofs, VALUE) =
  249. rb_class_new_instance(0, NULL, submsgdata->subklass);
  250. }
  251. set_hasbit(closure, submsgdata->hasbit);
  252. submsg_rb = DEREF(msg, submsgdata->ofs, VALUE);
  253. TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
  254. return submsg;
  255. }
  256. // Handler data for startmap/endmap handlers.
  257. typedef struct {
  258. size_t ofs;
  259. upb_fieldtype_t key_field_type;
  260. upb_fieldtype_t value_field_type;
  261. VALUE subklass;
  262. } map_handlerdata_t;
  263. // Temporary frame for map parsing: at the beginning of a map entry message, a
  264. // submsg handler allocates a frame to hold (i) a reference to the Map object
  265. // into which this message will be inserted and (ii) storage slots to
  266. // temporarily hold the key and value for this map entry until the end of the
  267. // submessage. When the submessage ends, another handler is called to insert the
  268. // value into the map.
  269. typedef struct {
  270. VALUE map;
  271. const map_handlerdata_t* handlerdata;
  272. char key_storage[NATIVE_SLOT_MAX_SIZE];
  273. char value_storage[NATIVE_SLOT_MAX_SIZE];
  274. } map_parse_frame_t;
  275. static void MapParseFrame_mark(void* _self) {
  276. map_parse_frame_t* frame = _self;
  277. // This shouldn't strictly be necessary since this should be rooted by the
  278. // message itself, but it can't hurt.
  279. rb_gc_mark(frame->map);
  280. native_slot_mark(frame->handlerdata->key_field_type, &frame->key_storage);
  281. native_slot_mark(frame->handlerdata->value_field_type, &frame->value_storage);
  282. }
  283. void MapParseFrame_free(void* self) {
  284. xfree(self);
  285. }
  286. rb_data_type_t MapParseFrame_type = {
  287. "MapParseFrame",
  288. { MapParseFrame_mark, MapParseFrame_free, NULL },
  289. };
  290. // Handler to begin a map entry: allocates a temporary frame. This is the
  291. // 'startsubmsg' handler on the msgdef that contains the map field.
  292. static void *startmap_handler(void *closure, const void *hd) {
  293. MessageHeader* msg = closure;
  294. const map_handlerdata_t* mapdata = hd;
  295. map_parse_frame_t* frame = ALLOC(map_parse_frame_t);
  296. VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE);
  297. frame->handlerdata = mapdata;
  298. frame->map = map_rb;
  299. native_slot_init(mapdata->key_field_type, &frame->key_storage);
  300. native_slot_init(mapdata->value_field_type, &frame->value_storage);
  301. Map_set_frame(map_rb,
  302. TypedData_Wrap_Struct(rb_cObject, &MapParseFrame_type, frame));
  303. return frame;
  304. }
  305. static bool endmap_handler(void *closure, const void *hd) {
  306. MessageHeader* msg = closure;
  307. const map_handlerdata_t* mapdata = hd;
  308. VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE);
  309. Map_set_frame(map_rb, Qnil);
  310. return true;
  311. }
  312. // Handler to end a map entry: inserts the value defined during the message into
  313. // the map. This is the 'endmsg' handler on the map entry msgdef.
  314. static bool endmapentry_handler(void* closure, const void* hd, upb_status* s) {
  315. map_parse_frame_t* frame = closure;
  316. const map_handlerdata_t* mapdata = hd;
  317. VALUE key = native_slot_get(
  318. mapdata->key_field_type, Qnil,
  319. &frame->key_storage);
  320. VALUE value = native_slot_get(
  321. mapdata->value_field_type, mapdata->subklass,
  322. &frame->value_storage);
  323. Map_index_set(frame->map, key, value);
  324. return true;
  325. }
  326. // Allocates a new map_handlerdata_t given the map entry message definition. If
  327. // the offset of the field within the parent message is also given, that is
  328. // added to the handler data as well. Note that this is called *twice* per map
  329. // field: once in the parent message handler setup when setting the startsubmsg
  330. // handler and once in the map entry message handler setup when setting the
  331. // key/value and endmsg handlers. The reason is that there is no easy way to
  332. // pass the handlerdata down to the sub-message handler setup.
  333. static map_handlerdata_t* new_map_handlerdata(
  334. size_t ofs,
  335. const upb_msgdef* mapentry_def,
  336. const Descriptor* desc) {
  337. const upb_fielddef* key_field;
  338. const upb_fielddef* value_field;
  339. map_handlerdata_t* hd = ALLOC(map_handlerdata_t);
  340. hd->ofs = ofs;
  341. key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD);
  342. assert(key_field != NULL);
  343. hd->key_field_type = upb_fielddef_type(key_field);
  344. value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD);
  345. assert(value_field != NULL);
  346. hd->value_field_type = upb_fielddef_type(value_field);
  347. hd->subklass = field_type_class(desc->layout, value_field);
  348. return hd;
  349. }
  350. // Handlers that set primitive values in oneofs.
  351. #define DEFINE_ONEOF_HANDLER(type, ctype) \
  352. static bool oneof##type##_handler(void *closure, const void *hd, \
  353. ctype val) { \
  354. const oneof_handlerdata_t *oneofdata = hd; \
  355. DEREF(closure, oneofdata->case_ofs, uint32_t) = \
  356. oneofdata->oneof_case_num; \
  357. DEREF(closure, oneofdata->ofs, ctype) = val; \
  358. return true; \
  359. }
  360. DEFINE_ONEOF_HANDLER(bool, bool)
  361. DEFINE_ONEOF_HANDLER(int32, int32_t)
  362. DEFINE_ONEOF_HANDLER(uint32, uint32_t)
  363. DEFINE_ONEOF_HANDLER(float, float)
  364. DEFINE_ONEOF_HANDLER(int64, int64_t)
  365. DEFINE_ONEOF_HANDLER(uint64, uint64_t)
  366. DEFINE_ONEOF_HANDLER(double, double)
  367. #undef DEFINE_ONEOF_HANDLER
  368. // Handlers for strings in a oneof.
  369. static void *oneofstr_handler(void *closure,
  370. const void *hd,
  371. size_t size_hint) {
  372. MessageHeader* msg = closure;
  373. const oneof_handlerdata_t *oneofdata = hd;
  374. VALUE str = rb_str_new2("");
  375. rb_enc_associate(str, kRubyStringUtf8Encoding);
  376. DEREF(msg, oneofdata->case_ofs, uint32_t) =
  377. oneofdata->oneof_case_num;
  378. DEREF(msg, oneofdata->ofs, VALUE) = str;
  379. return (void*)str;
  380. }
  381. static void *oneofbytes_handler(void *closure,
  382. const void *hd,
  383. size_t size_hint) {
  384. MessageHeader* msg = closure;
  385. const oneof_handlerdata_t *oneofdata = hd;
  386. VALUE str = rb_str_new2("");
  387. rb_enc_associate(str, kRubyString8bitEncoding);
  388. DEREF(msg, oneofdata->case_ofs, uint32_t) =
  389. oneofdata->oneof_case_num;
  390. DEREF(msg, oneofdata->ofs, VALUE) = str;
  391. return (void*)str;
  392. }
  393. static bool oneofstring_end_handler(void* closure, const void* hd) {
  394. VALUE rb_str = rb_str_new2("");
  395. rb_obj_freeze(rb_str);
  396. return true;
  397. }
  398. // Handler for a submessage field in a oneof.
  399. static void *oneofsubmsg_handler(void *closure,
  400. const void *hd) {
  401. MessageHeader* msg = closure;
  402. const oneof_handlerdata_t *oneofdata = hd;
  403. uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t);
  404. VALUE submsg_rb;
  405. MessageHeader* submsg;
  406. if (oldcase != oneofdata->oneof_case_num ||
  407. DEREF(msg, oneofdata->ofs, VALUE) == Qnil) {
  408. DEREF(msg, oneofdata->ofs, VALUE) =
  409. rb_class_new_instance(0, NULL, oneofdata->subklass);
  410. }
  411. // Set the oneof case *after* allocating the new class instance -- otherwise,
  412. // if the Ruby GC is invoked as part of a call into the VM, it might invoke
  413. // our mark routines, and our mark routines might see the case value
  414. // indicating a VALUE is present and expect a valid VALUE. See comment in
  415. // layout_set() for more detail: basically, the change to the value and the
  416. // case must be atomic w.r.t. the Ruby VM.
  417. DEREF(msg, oneofdata->case_ofs, uint32_t) =
  418. oneofdata->oneof_case_num;
  419. submsg_rb = DEREF(msg, oneofdata->ofs, VALUE);
  420. TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
  421. return submsg;
  422. }
  423. // Set up handlers for a repeated field.
  424. static void add_handlers_for_repeated_field(upb_handlers *h,
  425. const Descriptor* desc,
  426. const upb_fielddef *f,
  427. size_t offset) {
  428. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  429. attr.handler_data = newhandlerdata(h, offset, -1);
  430. upb_handlers_setstartseq(h, f, startseq_handler, &attr);
  431. switch (upb_fielddef_type(f)) {
  432. #define SET_HANDLER(utype, ltype) \
  433. case utype: \
  434. upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \
  435. break;
  436. SET_HANDLER(UPB_TYPE_BOOL, bool);
  437. SET_HANDLER(UPB_TYPE_INT32, int32);
  438. SET_HANDLER(UPB_TYPE_UINT32, uint32);
  439. SET_HANDLER(UPB_TYPE_ENUM, int32);
  440. SET_HANDLER(UPB_TYPE_FLOAT, float);
  441. SET_HANDLER(UPB_TYPE_INT64, int64);
  442. SET_HANDLER(UPB_TYPE_UINT64, uint64);
  443. SET_HANDLER(UPB_TYPE_DOUBLE, double);
  444. #undef SET_HANDLER
  445. case UPB_TYPE_STRING:
  446. case UPB_TYPE_BYTES: {
  447. bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
  448. upb_handlers_setstartstr(h, f, is_bytes ?
  449. appendbytes_handler : appendstr_handler,
  450. NULL);
  451. upb_handlers_setstring(h, f, stringdata_handler, NULL);
  452. upb_handlers_setendstr(h, f, appendstring_end_handler, NULL);
  453. break;
  454. }
  455. case UPB_TYPE_MESSAGE: {
  456. VALUE subklass = field_type_class(desc->layout, f);
  457. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  458. attr.handler_data = newsubmsghandlerdata(h, 0, -1, subklass);
  459. upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr);
  460. break;
  461. }
  462. }
  463. }
  464. // Set up handlers for a singular field.
  465. static void add_handlers_for_singular_field(const Descriptor* desc,
  466. upb_handlers* h,
  467. const upb_fielddef* f,
  468. size_t offset, size_t hasbit_off) {
  469. // The offset we pass to UPB points to the start of the Message,
  470. // rather than the start of where our data is stored.
  471. int32_t hasbit = -1;
  472. if (hasbit_off != MESSAGE_FIELD_NO_HASBIT) {
  473. hasbit = hasbit_off + sizeof(MessageHeader) * 8;
  474. }
  475. switch (upb_fielddef_type(f)) {
  476. case UPB_TYPE_BOOL:
  477. case UPB_TYPE_INT32:
  478. case UPB_TYPE_UINT32:
  479. case UPB_TYPE_ENUM:
  480. case UPB_TYPE_FLOAT:
  481. case UPB_TYPE_INT64:
  482. case UPB_TYPE_UINT64:
  483. case UPB_TYPE_DOUBLE:
  484. upb_msg_setscalarhandler(h, f, offset, hasbit);
  485. break;
  486. case UPB_TYPE_STRING:
  487. case UPB_TYPE_BYTES: {
  488. bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
  489. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  490. attr.handler_data = newhandlerdata(h, offset, hasbit);
  491. upb_handlers_setstartstr(h, f,
  492. is_bytes ? bytes_handler : str_handler,
  493. &attr);
  494. upb_handlers_setstring(h, f, stringdata_handler, &attr);
  495. upb_handlers_setendstr(h, f, stringdata_end_handler, &attr);
  496. break;
  497. }
  498. case UPB_TYPE_MESSAGE: {
  499. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  500. attr.handler_data = newsubmsghandlerdata(
  501. h, offset, hasbit, field_type_class(desc->layout, f));
  502. upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr);
  503. break;
  504. }
  505. }
  506. }
  507. // Adds handlers to a map field.
  508. static void add_handlers_for_mapfield(upb_handlers* h,
  509. const upb_fielddef* fielddef,
  510. size_t offset,
  511. const Descriptor* desc) {
  512. const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef);
  513. map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc);
  514. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  515. upb_handlers_addcleanup(h, hd, xfree);
  516. attr.handler_data = hd;
  517. upb_handlers_setstartsubmsg(h, fielddef, startmap_handler, &attr);
  518. upb_handlers_setendsubmsg(h, fielddef, endmap_handler, &attr);
  519. }
  520. // Adds handlers to a map-entry msgdef.
  521. static void add_handlers_for_mapentry(const upb_msgdef* msgdef, upb_handlers* h,
  522. const Descriptor* desc) {
  523. const upb_fielddef* key_field = map_entry_key(msgdef);
  524. const upb_fielddef* value_field = map_entry_value(msgdef);
  525. map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc);
  526. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  527. upb_handlers_addcleanup(h, hd, xfree);
  528. attr.handler_data = hd;
  529. upb_handlers_setendmsg(h, endmapentry_handler, &attr);
  530. add_handlers_for_singular_field(
  531. desc, h, key_field,
  532. offsetof(map_parse_frame_t, key_storage),
  533. MESSAGE_FIELD_NO_HASBIT);
  534. add_handlers_for_singular_field(
  535. desc, h, value_field,
  536. offsetof(map_parse_frame_t, value_storage),
  537. MESSAGE_FIELD_NO_HASBIT);
  538. }
  539. // Set up handlers for a oneof field.
  540. static void add_handlers_for_oneof_field(upb_handlers *h,
  541. const upb_fielddef *f,
  542. size_t offset,
  543. size_t oneof_case_offset,
  544. const Descriptor* desc) {
  545. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  546. attr.handler_data =
  547. newoneofhandlerdata(h, offset, oneof_case_offset, f, desc);
  548. switch (upb_fielddef_type(f)) {
  549. #define SET_HANDLER(utype, ltype) \
  550. case utype: \
  551. upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \
  552. break;
  553. SET_HANDLER(UPB_TYPE_BOOL, bool);
  554. SET_HANDLER(UPB_TYPE_INT32, int32);
  555. SET_HANDLER(UPB_TYPE_UINT32, uint32);
  556. SET_HANDLER(UPB_TYPE_ENUM, int32);
  557. SET_HANDLER(UPB_TYPE_FLOAT, float);
  558. SET_HANDLER(UPB_TYPE_INT64, int64);
  559. SET_HANDLER(UPB_TYPE_UINT64, uint64);
  560. SET_HANDLER(UPB_TYPE_DOUBLE, double);
  561. #undef SET_HANDLER
  562. case UPB_TYPE_STRING:
  563. case UPB_TYPE_BYTES: {
  564. bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
  565. upb_handlers_setstartstr(h, f, is_bytes ?
  566. oneofbytes_handler : oneofstr_handler,
  567. &attr);
  568. upb_handlers_setstring(h, f, stringdata_handler, NULL);
  569. upb_handlers_setendstr(h, f, oneofstring_end_handler, &attr);
  570. break;
  571. }
  572. case UPB_TYPE_MESSAGE: {
  573. upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr);
  574. break;
  575. }
  576. }
  577. }
  578. static bool unknown_field_handler(void* closure, const void* hd,
  579. const char* buf, size_t size) {
  580. MessageHeader* msg = (MessageHeader*)closure;
  581. UPB_UNUSED(hd);
  582. if (msg->unknown_fields == NULL) {
  583. msg->unknown_fields = malloc(sizeof(stringsink));
  584. stringsink_init(msg->unknown_fields);
  585. }
  586. stringsink_string(msg->unknown_fields, NULL, buf, size, NULL);
  587. return true;
  588. }
  589. void add_handlers_for_message(const void *closure, upb_handlers *h) {
  590. const VALUE descriptor_pool = (VALUE)closure;
  591. const upb_msgdef* msgdef = upb_handlers_msgdef(h);
  592. Descriptor* desc =
  593. ruby_to_Descriptor(get_msgdef_obj(descriptor_pool, msgdef));
  594. upb_msg_field_iter i;
  595. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  596. // Ensure layout exists. We may be invoked to create handlers for a given
  597. // message if we are included as a submsg of another message type before our
  598. // class is actually built, so to work around this, we just create the layout
  599. // (and handlers, in the class-building function) on-demand.
  600. if (desc->layout == NULL) {
  601. create_layout(desc);
  602. }
  603. // If this is a mapentry message type, set up a special set of handlers and
  604. // bail out of the normal (user-defined) message type handling.
  605. if (upb_msgdef_mapentry(msgdef)) {
  606. add_handlers_for_mapentry(msgdef, h, desc);
  607. return;
  608. }
  609. upb_handlers_setunknown(h, unknown_field_handler, &attr);
  610. for (upb_msg_field_begin(&i, desc->msgdef);
  611. !upb_msg_field_done(&i);
  612. upb_msg_field_next(&i)) {
  613. const upb_fielddef *f = upb_msg_iter_field(&i);
  614. const upb_oneofdef *oneof = upb_fielddef_containingoneof(f);
  615. size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset +
  616. sizeof(MessageHeader);
  617. if (oneof) {
  618. size_t oneof_case_offset =
  619. desc->layout->oneofs[upb_oneofdef_index(oneof)].case_offset +
  620. sizeof(MessageHeader);
  621. add_handlers_for_oneof_field(h, f, offset, oneof_case_offset, desc);
  622. } else if (is_map_field(f)) {
  623. add_handlers_for_mapfield(h, f, offset, desc);
  624. } else if (upb_fielddef_isseq(f)) {
  625. add_handlers_for_repeated_field(h, desc, f, offset);
  626. } else {
  627. add_handlers_for_singular_field(
  628. desc, h, f, offset,
  629. desc->layout->fields[upb_fielddef_index(f)].hasbit);
  630. }
  631. }
  632. }
  633. // Constructs the handlers for filling a message's data into an in-memory
  634. // object.
  635. const upb_handlers* get_fill_handlers(Descriptor* desc) {
  636. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  637. return upb_handlercache_get(pool->fill_handler_cache, desc->msgdef);
  638. }
  639. static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) {
  640. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  641. return upb_pbcodecache_get(pool->fill_method_cache, desc->msgdef);
  642. }
  643. static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) {
  644. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  645. return upb_json_codecache_get(pool->json_fill_method_cache, desc->msgdef);
  646. }
  647. static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) {
  648. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  649. return upb_handlercache_get(pool->pb_serialize_handler_cache, desc->msgdef);
  650. }
  651. static const upb_handlers* msgdef_json_serialize_handlers(
  652. Descriptor* desc, bool preserve_proto_fieldnames) {
  653. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  654. if (preserve_proto_fieldnames) {
  655. return upb_handlercache_get(pool->json_serialize_handler_preserve_cache,
  656. desc->msgdef);
  657. } else {
  658. return upb_handlercache_get(pool->json_serialize_handler_cache,
  659. desc->msgdef);
  660. }
  661. }
  662. // Stack-allocated context during an encode/decode operation. Contains the upb
  663. // environment and its stack-based allocator, an initial buffer for allocations
  664. // to avoid malloc() when possible, and a template for Ruby exception messages
  665. // if any error occurs.
  666. #define STACK_ENV_STACKBYTES 4096
  667. typedef struct {
  668. upb_arena *arena;
  669. upb_status status;
  670. const char* ruby_error_template;
  671. char allocbuf[STACK_ENV_STACKBYTES];
  672. } stackenv;
  673. static void stackenv_init(stackenv* se, const char* errmsg);
  674. static void stackenv_uninit(stackenv* se);
  675. static void stackenv_init(stackenv* se, const char* errmsg) {
  676. se->ruby_error_template = errmsg;
  677. se->arena =
  678. upb_arena_init(se->allocbuf, sizeof(se->allocbuf), &upb_alloc_global);
  679. upb_status_clear(&se->status);
  680. }
  681. static void stackenv_uninit(stackenv* se) {
  682. upb_arena_free(se->arena);
  683. if (!upb_ok(&se->status)) {
  684. // TODO(haberman): have a way to verify that this is actually a parse error,
  685. // instead of just throwing "parse error" unconditionally.
  686. VALUE errmsg = rb_str_new2(upb_status_errmsg(&se->status));
  687. rb_raise(cParseError, se->ruby_error_template, errmsg);
  688. }
  689. }
  690. /*
  691. * call-seq:
  692. * MessageClass.decode(data) => message
  693. *
  694. * Decodes the given data (as a string containing bytes in protocol buffers wire
  695. * format) under the interpretration given by this message class's definition
  696. * and returns a message object with the corresponding field values.
  697. */
  698. VALUE Message_decode(VALUE klass, VALUE data) {
  699. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  700. Descriptor* desc = ruby_to_Descriptor(descriptor);
  701. VALUE msgklass = Descriptor_msgclass(descriptor);
  702. VALUE msg_rb;
  703. MessageHeader* msg;
  704. if (TYPE(data) != T_STRING) {
  705. rb_raise(rb_eArgError, "Expected string for binary protobuf data.");
  706. }
  707. msg_rb = rb_class_new_instance(0, NULL, msgklass);
  708. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  709. {
  710. const upb_pbdecodermethod* method = msgdef_decodermethod(desc);
  711. const upb_handlers* h = upb_pbdecodermethod_desthandlers(method);
  712. stackenv se;
  713. upb_sink sink;
  714. upb_pbdecoder* decoder;
  715. stackenv_init(&se, "Error occurred during parsing: %" PRIsVALUE);
  716. upb_sink_reset(&sink, h, msg);
  717. decoder = upb_pbdecoder_create(se.arena, method, sink, &se.status);
  718. upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
  719. upb_pbdecoder_input(decoder));
  720. stackenv_uninit(&se);
  721. }
  722. return msg_rb;
  723. }
  724. /*
  725. * call-seq:
  726. * MessageClass.decode_json(data, options = {}) => message
  727. *
  728. * Decodes the given data (as a string containing bytes in protocol buffers wire
  729. * format) under the interpretration given by this message class's definition
  730. * and returns a message object with the corresponding field values.
  731. *
  732. * @param options [Hash] options for the decoder
  733. * ignore_unknown_fields: set true to ignore unknown fields (default is to
  734. * raise an error)
  735. */
  736. VALUE Message_decode_json(int argc, VALUE* argv, VALUE klass) {
  737. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  738. Descriptor* desc = ruby_to_Descriptor(descriptor);
  739. VALUE msgklass = Descriptor_msgclass(descriptor);
  740. VALUE msg_rb;
  741. VALUE data = argv[0];
  742. VALUE ignore_unknown_fields = Qfalse;
  743. MessageHeader* msg;
  744. if (argc < 1 || argc > 2) {
  745. rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
  746. }
  747. if (argc == 2) {
  748. VALUE hash_args = argv[1];
  749. if (TYPE(hash_args) != T_HASH) {
  750. rb_raise(rb_eArgError, "Expected hash arguments.");
  751. }
  752. ignore_unknown_fields = rb_hash_lookup2(
  753. hash_args, ID2SYM(rb_intern("ignore_unknown_fields")), Qfalse);
  754. }
  755. if (TYPE(data) != T_STRING) {
  756. rb_raise(rb_eArgError, "Expected string for JSON data.");
  757. }
  758. // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to
  759. // convert, because string handlers pass data directly to message string
  760. // fields.
  761. msg_rb = rb_class_new_instance(0, NULL, msgklass);
  762. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  763. {
  764. const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc);
  765. stackenv se;
  766. upb_sink sink;
  767. upb_json_parser* parser;
  768. DescriptorPool* pool = ruby_to_DescriptorPool(generated_pool);
  769. stackenv_init(&se, "Error occurred during parsing: %" PRIsVALUE);
  770. upb_sink_reset(&sink, get_fill_handlers(desc), msg);
  771. parser = upb_json_parser_create(se.arena, method, pool->symtab, sink,
  772. &se.status, RTEST(ignore_unknown_fields));
  773. upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
  774. upb_json_parser_input(parser));
  775. stackenv_uninit(&se);
  776. }
  777. return msg_rb;
  778. }
  779. // -----------------------------------------------------------------------------
  780. // Serializing.
  781. // -----------------------------------------------------------------------------
  782. /* msgvisitor *****************************************************************/
  783. static void putmsg(VALUE msg, const Descriptor* desc, upb_sink sink, int depth,
  784. bool emit_defaults, bool is_json, bool open_msg);
  785. static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
  786. upb_selector_t ret;
  787. bool ok = upb_handlers_getselector(f, type, &ret);
  788. UPB_ASSERT(ok);
  789. return ret;
  790. }
  791. static void putstr(VALUE str, const upb_fielddef *f, upb_sink sink) {
  792. upb_sink subsink;
  793. if (str == Qnil) return;
  794. assert(BUILTIN_TYPE(str) == RUBY_T_STRING);
  795. // We should be guaranteed that the string has the correct encoding because
  796. // we ensured this at assignment time and then froze the string.
  797. if (upb_fielddef_type(f) == UPB_TYPE_STRING) {
  798. assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyStringUtf8Encoding);
  799. } else {
  800. assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyString8bitEncoding);
  801. }
  802. upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str),
  803. &subsink);
  804. upb_sink_putstring(subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str),
  805. RSTRING_LEN(str), NULL);
  806. upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));
  807. }
  808. static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink sink,
  809. int depth, bool emit_defaults, bool is_json) {
  810. upb_sink subsink;
  811. VALUE descriptor;
  812. Descriptor* subdesc;
  813. if (submsg == Qnil) return;
  814. descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  815. subdesc = ruby_to_Descriptor(descriptor);
  816. upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink);
  817. putmsg(submsg, subdesc, subsink, depth + 1, emit_defaults, is_json, true);
  818. upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG));
  819. }
  820. static void putary(VALUE ary, const upb_fielddef* f, upb_sink sink, int depth,
  821. bool emit_defaults, bool is_json) {
  822. upb_sink subsink;
  823. upb_fieldtype_t type = upb_fielddef_type(f);
  824. upb_selector_t sel = 0;
  825. int size;
  826. int i;
  827. if (ary == Qnil) return;
  828. if (!emit_defaults && NUM2INT(RepeatedField_length(ary)) == 0) return;
  829. size = NUM2INT(RepeatedField_length(ary));
  830. if (size == 0 && !emit_defaults) return;
  831. upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
  832. if (upb_fielddef_isprimitive(f)) {
  833. sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  834. }
  835. for (i = 0; i < size; i++) {
  836. void* memory = RepeatedField_index_native(ary, i);
  837. switch (type) {
  838. #define T(upbtypeconst, upbtype, ctype) \
  839. case upbtypeconst: \
  840. upb_sink_put##upbtype(subsink, sel, *((ctype*)memory)); \
  841. break;
  842. T(UPB_TYPE_FLOAT, float, float)
  843. T(UPB_TYPE_DOUBLE, double, double)
  844. T(UPB_TYPE_BOOL, bool, int8_t)
  845. case UPB_TYPE_ENUM:
  846. T(UPB_TYPE_INT32, int32, int32_t)
  847. T(UPB_TYPE_UINT32, uint32, uint32_t)
  848. T(UPB_TYPE_INT64, int64, int64_t)
  849. T(UPB_TYPE_UINT64, uint64, uint64_t)
  850. case UPB_TYPE_STRING:
  851. case UPB_TYPE_BYTES:
  852. putstr(*((VALUE *)memory), f, subsink);
  853. break;
  854. case UPB_TYPE_MESSAGE:
  855. putsubmsg(*((VALUE*)memory), f, subsink, depth, emit_defaults, is_json);
  856. break;
  857. #undef T
  858. }
  859. }
  860. upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
  861. }
  862. static void put_ruby_value(VALUE value, const upb_fielddef* f, VALUE type_class,
  863. int depth, upb_sink sink, bool emit_defaults,
  864. bool is_json) {
  865. upb_selector_t sel = 0;
  866. if (depth > ENCODE_MAX_NESTING) {
  867. rb_raise(rb_eRuntimeError,
  868. "Maximum recursion depth exceeded during encoding.");
  869. }
  870. if (upb_fielddef_isprimitive(f)) {
  871. sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  872. }
  873. switch (upb_fielddef_type(f)) {
  874. case UPB_TYPE_INT32:
  875. upb_sink_putint32(sink, sel, NUM2INT(value));
  876. break;
  877. case UPB_TYPE_INT64:
  878. upb_sink_putint64(sink, sel, NUM2LL(value));
  879. break;
  880. case UPB_TYPE_UINT32:
  881. upb_sink_putuint32(sink, sel, NUM2UINT(value));
  882. break;
  883. case UPB_TYPE_UINT64:
  884. upb_sink_putuint64(sink, sel, NUM2ULL(value));
  885. break;
  886. case UPB_TYPE_FLOAT:
  887. upb_sink_putfloat(sink, sel, NUM2DBL(value));
  888. break;
  889. case UPB_TYPE_DOUBLE:
  890. upb_sink_putdouble(sink, sel, NUM2DBL(value));
  891. break;
  892. case UPB_TYPE_ENUM: {
  893. if (TYPE(value) == T_SYMBOL) {
  894. value = rb_funcall(type_class, rb_intern("resolve"), 1, value);
  895. }
  896. upb_sink_putint32(sink, sel, NUM2INT(value));
  897. break;
  898. }
  899. case UPB_TYPE_BOOL:
  900. upb_sink_putbool(sink, sel, value == Qtrue);
  901. break;
  902. case UPB_TYPE_STRING:
  903. case UPB_TYPE_BYTES:
  904. putstr(value, f, sink);
  905. break;
  906. case UPB_TYPE_MESSAGE:
  907. putsubmsg(value, f, sink, depth, emit_defaults, is_json);
  908. }
  909. }
  910. static void putmap(VALUE map, const upb_fielddef* f, upb_sink sink, int depth,
  911. bool emit_defaults, bool is_json) {
  912. Map* self;
  913. upb_sink subsink;
  914. const upb_fielddef* key_field;
  915. const upb_fielddef* value_field;
  916. Map_iter it;
  917. if (map == Qnil) return;
  918. if (!emit_defaults && Map_length(map) == 0) return;
  919. self = ruby_to_Map(map);
  920. upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
  921. assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE);
  922. key_field = map_field_key(f);
  923. value_field = map_field_value(f);
  924. for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) {
  925. VALUE key = Map_iter_key(&it);
  926. VALUE value = Map_iter_value(&it);
  927. upb_status status;
  928. upb_sink entry_sink;
  929. upb_sink_startsubmsg(subsink, getsel(f, UPB_HANDLER_STARTSUBMSG),
  930. &entry_sink);
  931. upb_sink_startmsg(entry_sink);
  932. put_ruby_value(key, key_field, Qnil, depth + 1, entry_sink, emit_defaults,
  933. is_json);
  934. put_ruby_value(value, value_field, self->value_type_class, depth + 1,
  935. entry_sink, emit_defaults, is_json);
  936. upb_sink_endmsg(entry_sink, &status);
  937. upb_sink_endsubmsg(subsink, getsel(f, UPB_HANDLER_ENDSUBMSG));
  938. }
  939. upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
  940. }
  941. static const upb_handlers* msgdef_json_serialize_handlers(
  942. Descriptor* desc, bool preserve_proto_fieldnames);
  943. static void putjsonany(VALUE msg_rb, const Descriptor* desc, upb_sink sink,
  944. int depth, bool emit_defaults) {
  945. upb_status status;
  946. MessageHeader* msg = NULL;
  947. const upb_fielddef* type_field = upb_msgdef_itof(desc->msgdef, UPB_ANY_TYPE);
  948. const upb_fielddef* value_field = upb_msgdef_itof(desc->msgdef, UPB_ANY_VALUE);
  949. size_t type_url_offset;
  950. VALUE type_url_str_rb;
  951. const upb_msgdef *payload_type = NULL;
  952. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  953. upb_sink_startmsg(sink);
  954. /* Handle type url */
  955. type_url_offset = desc->layout->fields[upb_fielddef_index(type_field)].offset;
  956. type_url_str_rb = DEREF(Message_data(msg), type_url_offset, VALUE);
  957. if (RSTRING_LEN(type_url_str_rb) > 0) {
  958. putstr(type_url_str_rb, type_field, sink);
  959. }
  960. {
  961. const char* type_url_str = RSTRING_PTR(type_url_str_rb);
  962. size_t type_url_len = RSTRING_LEN(type_url_str_rb);
  963. DescriptorPool* pool = ruby_to_DescriptorPool(generated_pool);
  964. if (type_url_len <= 20 ||
  965. strncmp(type_url_str, "type.googleapis.com/", 20) != 0) {
  966. rb_raise(rb_eRuntimeError, "Invalid type url: %s", type_url_str);
  967. return;
  968. }
  969. /* Resolve type url */
  970. type_url_str += 20;
  971. type_url_len -= 20;
  972. payload_type = upb_symtab_lookupmsg2(
  973. pool->symtab, type_url_str, type_url_len);
  974. if (payload_type == NULL) {
  975. rb_raise(rb_eRuntimeError, "Unknown type: %s", type_url_str);
  976. return;
  977. }
  978. }
  979. {
  980. uint32_t value_offset;
  981. VALUE value_str_rb;
  982. size_t value_len;
  983. value_offset = desc->layout->fields[upb_fielddef_index(value_field)].offset;
  984. value_str_rb = DEREF(Message_data(msg), value_offset, VALUE);
  985. value_len = RSTRING_LEN(value_str_rb);
  986. if (value_len > 0) {
  987. VALUE payload_desc_rb = get_msgdef_obj(generated_pool, payload_type);
  988. Descriptor* payload_desc = ruby_to_Descriptor(payload_desc_rb);
  989. VALUE payload_class = Descriptor_msgclass(payload_desc_rb);
  990. upb_sink subsink;
  991. bool is_wellknown;
  992. VALUE payload_msg_rb = Message_decode(payload_class, value_str_rb);
  993. is_wellknown =
  994. upb_msgdef_wellknowntype(payload_desc->msgdef) !=
  995. UPB_WELLKNOWN_UNSPECIFIED;
  996. if (is_wellknown) {
  997. upb_sink_startstr(sink, getsel(value_field, UPB_HANDLER_STARTSTR), 0,
  998. &subsink);
  999. }
  1000. subsink.handlers =
  1001. msgdef_json_serialize_handlers(payload_desc, true);
  1002. subsink.closure = sink.closure;
  1003. putmsg(payload_msg_rb, payload_desc, subsink, depth, emit_defaults, true,
  1004. is_wellknown);
  1005. }
  1006. }
  1007. upb_sink_endmsg(sink, &status);
  1008. }
  1009. static void putjsonlistvalue(
  1010. VALUE msg_rb, const Descriptor* desc,
  1011. upb_sink sink, int depth, bool emit_defaults) {
  1012. upb_status status;
  1013. upb_sink subsink;
  1014. MessageHeader* msg = NULL;
  1015. const upb_fielddef* f = upb_msgdef_itof(desc->msgdef, 1);
  1016. uint32_t offset =
  1017. desc->layout->fields[upb_fielddef_index(f)].offset +
  1018. sizeof(MessageHeader);
  1019. VALUE ary;
  1020. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  1021. upb_sink_startmsg(sink);
  1022. ary = DEREF(msg, offset, VALUE);
  1023. if (ary == Qnil || RepeatedField_size(ary) == 0) {
  1024. upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
  1025. upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
  1026. } else {
  1027. putary(ary, f, sink, depth, emit_defaults, true);
  1028. }
  1029. upb_sink_endmsg(sink, &status);
  1030. }
  1031. static void putmsg(VALUE msg_rb, const Descriptor* desc,
  1032. upb_sink sink, int depth, bool emit_defaults,
  1033. bool is_json, bool open_msg) {
  1034. MessageHeader* msg;
  1035. upb_msg_field_iter i;
  1036. upb_status status;
  1037. if (is_json &&
  1038. upb_msgdef_wellknowntype(desc->msgdef) == UPB_WELLKNOWN_ANY) {
  1039. putjsonany(msg_rb, desc, sink, depth, emit_defaults);
  1040. return;
  1041. }
  1042. if (is_json &&
  1043. upb_msgdef_wellknowntype(desc->msgdef) == UPB_WELLKNOWN_LISTVALUE) {
  1044. putjsonlistvalue(msg_rb, desc, sink, depth, emit_defaults);
  1045. return;
  1046. }
  1047. if (open_msg) {
  1048. upb_sink_startmsg(sink);
  1049. }
  1050. // Protect against cycles (possible because users may freely reassign message
  1051. // and repeated fields) by imposing a maximum recursion depth.
  1052. if (depth > ENCODE_MAX_NESTING) {
  1053. rb_raise(rb_eRuntimeError,
  1054. "Maximum recursion depth exceeded during encoding.");
  1055. }
  1056. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  1057. if (desc != msg->descriptor) {
  1058. rb_raise(rb_eArgError,
  1059. "The type of given msg is '%s', expect '%s'.",
  1060. upb_msgdef_fullname(msg->descriptor->msgdef),
  1061. upb_msgdef_fullname(desc->msgdef));
  1062. }
  1063. for (upb_msg_field_begin(&i, desc->msgdef);
  1064. !upb_msg_field_done(&i);
  1065. upb_msg_field_next(&i)) {
  1066. upb_fielddef *f = upb_msg_iter_field(&i);
  1067. const upb_oneofdef *oneof = upb_fielddef_containingoneof(f);
  1068. bool is_matching_oneof = false;
  1069. uint32_t offset =
  1070. desc->layout->fields[upb_fielddef_index(f)].offset +
  1071. sizeof(MessageHeader);
  1072. if (oneof) {
  1073. uint32_t oneof_case =
  1074. slot_read_oneof_case(desc->layout, Message_data(msg), oneof);
  1075. // For a oneof, check that this field is actually present -- skip all the
  1076. // below if not.
  1077. if (oneof_case != upb_fielddef_number(f)) {
  1078. continue;
  1079. }
  1080. // Otherwise, fall through to the appropriate singular-field handler
  1081. // below.
  1082. is_matching_oneof = true;
  1083. }
  1084. if (is_map_field(f)) {
  1085. VALUE map = DEREF(msg, offset, VALUE);
  1086. if (map != Qnil || emit_defaults) {
  1087. putmap(map, f, sink, depth, emit_defaults, is_json);
  1088. }
  1089. } else if (upb_fielddef_isseq(f)) {
  1090. VALUE ary = DEREF(msg, offset, VALUE);
  1091. if (ary != Qnil) {
  1092. putary(ary, f, sink, depth, emit_defaults, is_json);
  1093. }
  1094. } else if (upb_fielddef_isstring(f)) {
  1095. VALUE str = DEREF(msg, offset, VALUE);
  1096. bool is_default = false;
  1097. if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO2) {
  1098. is_default = layout_has(desc->layout, Message_data(msg), f) == Qfalse;
  1099. } else if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO3) {
  1100. is_default = RSTRING_LEN(str) == 0;
  1101. }
  1102. if (is_matching_oneof || emit_defaults || !is_default) {
  1103. putstr(str, f, sink);
  1104. }
  1105. } else if (upb_fielddef_issubmsg(f)) {
  1106. putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth,
  1107. emit_defaults, is_json);
  1108. } else {
  1109. upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  1110. #define T(upbtypeconst, upbtype, ctype, default_value) \
  1111. case upbtypeconst: { \
  1112. ctype value = DEREF(msg, offset, ctype); \
  1113. bool is_default = false; \
  1114. if (upb_fielddef_haspresence(f)) { \
  1115. is_default = layout_has(desc->layout, Message_data(msg), f) == Qfalse; \
  1116. } else if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO3) { \
  1117. is_default = default_value == value; \
  1118. } \
  1119. if (is_matching_oneof || emit_defaults || !is_default) { \
  1120. upb_sink_put##upbtype(sink, sel, value); \
  1121. } \
  1122. } break;
  1123. switch (upb_fielddef_type(f)) {
  1124. T(UPB_TYPE_FLOAT, float, float, 0.0)
  1125. T(UPB_TYPE_DOUBLE, double, double, 0.0)
  1126. T(UPB_TYPE_BOOL, bool, uint8_t, 0)
  1127. case UPB_TYPE_ENUM:
  1128. T(UPB_TYPE_INT32, int32, int32_t, 0)
  1129. T(UPB_TYPE_UINT32, uint32, uint32_t, 0)
  1130. T(UPB_TYPE_INT64, int64, int64_t, 0)
  1131. T(UPB_TYPE_UINT64, uint64, uint64_t, 0)
  1132. case UPB_TYPE_STRING:
  1133. case UPB_TYPE_BYTES:
  1134. case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error.");
  1135. }
  1136. #undef T
  1137. }
  1138. }
  1139. {
  1140. stringsink* unknown = msg->unknown_fields;
  1141. if (unknown != NULL) {
  1142. upb_sink_putunknown(sink, unknown->ptr, unknown->len);
  1143. }
  1144. }
  1145. if (open_msg) {
  1146. upb_sink_endmsg(sink, &status);
  1147. }
  1148. }
  1149. /*
  1150. * call-seq:
  1151. * MessageClass.encode(msg) => bytes
  1152. *
  1153. * Encodes the given message object to its serialized form in protocol buffers
  1154. * wire format.
  1155. */
  1156. VALUE Message_encode(VALUE klass, VALUE msg_rb) {
  1157. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  1158. Descriptor* desc = ruby_to_Descriptor(descriptor);
  1159. stringsink sink;
  1160. stringsink_init(&sink);
  1161. {
  1162. const upb_handlers* serialize_handlers =
  1163. msgdef_pb_serialize_handlers(desc);
  1164. stackenv se;
  1165. upb_pb_encoder* encoder;
  1166. VALUE ret;
  1167. stackenv_init(&se, "Error occurred during encoding: %" PRIsVALUE);
  1168. encoder = upb_pb_encoder_create(se.arena, serialize_handlers, sink.sink);
  1169. putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0, false, false, true);
  1170. ret = rb_str_new(sink.ptr, sink.len);
  1171. stackenv_uninit(&se);
  1172. stringsink_uninit(&sink);
  1173. return ret;
  1174. }
  1175. }
  1176. /*
  1177. * call-seq:
  1178. * MessageClass.encode_json(msg, options = {}) => json_string
  1179. *
  1180. * Encodes the given message object into its serialized JSON representation.
  1181. * @param options [Hash] options for the decoder
  1182. * preserve_proto_fieldnames: set true to use original fieldnames (default is to camelCase)
  1183. * emit_defaults: set true to emit 0/false values (default is to omit them)
  1184. */
  1185. VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) {
  1186. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  1187. Descriptor* desc = ruby_to_Descriptor(descriptor);
  1188. VALUE msg_rb;
  1189. VALUE preserve_proto_fieldnames = Qfalse;
  1190. VALUE emit_defaults = Qfalse;
  1191. stringsink sink;
  1192. if (argc < 1 || argc > 2) {
  1193. rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
  1194. }
  1195. msg_rb = argv[0];
  1196. if (argc == 2) {
  1197. VALUE hash_args = argv[1];
  1198. if (TYPE(hash_args) != T_HASH) {
  1199. rb_raise(rb_eArgError, "Expected hash arguments.");
  1200. }
  1201. preserve_proto_fieldnames = rb_hash_lookup2(
  1202. hash_args, ID2SYM(rb_intern("preserve_proto_fieldnames")), Qfalse);
  1203. emit_defaults = rb_hash_lookup2(
  1204. hash_args, ID2SYM(rb_intern("emit_defaults")), Qfalse);
  1205. }
  1206. stringsink_init(&sink);
  1207. {
  1208. const upb_handlers* serialize_handlers =
  1209. msgdef_json_serialize_handlers(desc, RTEST(preserve_proto_fieldnames));
  1210. upb_json_printer* printer;
  1211. stackenv se;
  1212. VALUE ret;
  1213. stackenv_init(&se, "Error occurred during encoding: %" PRIsVALUE);
  1214. printer = upb_json_printer_create(se.arena, serialize_handlers, sink.sink);
  1215. putmsg(msg_rb, desc, upb_json_printer_input(printer), 0,
  1216. RTEST(emit_defaults), true, true);
  1217. ret = rb_enc_str_new(sink.ptr, sink.len, rb_utf8_encoding());
  1218. stackenv_uninit(&se);
  1219. stringsink_uninit(&sink);
  1220. return ret;
  1221. }
  1222. }
  1223. static void discard_unknown(VALUE msg_rb, const Descriptor* desc) {
  1224. MessageHeader* msg;
  1225. upb_msg_field_iter it;
  1226. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  1227. {
  1228. stringsink* unknown = msg->unknown_fields;
  1229. if (unknown != NULL) {
  1230. stringsink_uninit(unknown);
  1231. msg->unknown_fields = NULL;
  1232. }
  1233. }
  1234. for (upb_msg_field_begin(&it, desc->msgdef);
  1235. !upb_msg_field_done(&it);
  1236. upb_msg_field_next(&it)) {
  1237. upb_fielddef *f = upb_msg_iter_field(&it);
  1238. const upb_oneofdef *oneof = upb_fielddef_containingoneof(f);
  1239. uint32_t offset =
  1240. desc->layout->fields[upb_fielddef_index(f)].offset +
  1241. sizeof(MessageHeader);
  1242. if (oneof) {
  1243. uint32_t oneof_case =
  1244. slot_read_oneof_case(desc->layout, Message_data(msg), oneof);
  1245. // For a oneof, check that this field is actually present -- skip all the
  1246. // below if not.
  1247. if (oneof_case != upb_fielddef_number(f)) {
  1248. continue;
  1249. }
  1250. // Otherwise, fall through to the appropriate singular-field handler
  1251. // below.
  1252. }
  1253. if (!upb_fielddef_issubmsg(f)) {
  1254. continue;
  1255. }
  1256. if (is_map_field(f)) {
  1257. VALUE map;
  1258. Map_iter map_it;
  1259. if (!upb_fielddef_issubmsg(map_field_value(f))) continue;
  1260. map = DEREF(msg, offset, VALUE);
  1261. if (map == Qnil) continue;
  1262. for (Map_begin(map, &map_it); !Map_done(&map_it); Map_next(&map_it)) {
  1263. VALUE submsg = Map_iter_value(&map_it);
  1264. VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  1265. const Descriptor* subdesc = ruby_to_Descriptor(descriptor);
  1266. discard_unknown(submsg, subdesc);
  1267. }
  1268. } else if (upb_fielddef_isseq(f)) {
  1269. VALUE ary = DEREF(msg, offset, VALUE);
  1270. int size;
  1271. int i;
  1272. if (ary == Qnil) continue;
  1273. size = NUM2INT(RepeatedField_length(ary));
  1274. for (i = 0; i < size; i++) {
  1275. void* memory = RepeatedField_index_native(ary, i);
  1276. VALUE submsg = *((VALUE *)memory);
  1277. VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  1278. const Descriptor* subdesc = ruby_to_Descriptor(descriptor);
  1279. discard_unknown(submsg, subdesc);
  1280. }
  1281. } else {
  1282. VALUE submsg = DEREF(msg, offset, VALUE);
  1283. VALUE descriptor;
  1284. const Descriptor* subdesc;
  1285. if (submsg == Qnil) continue;
  1286. descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  1287. subdesc = ruby_to_Descriptor(descriptor);
  1288. discard_unknown(submsg, subdesc);
  1289. }
  1290. }
  1291. }
  1292. /*
  1293. * call-seq:
  1294. * Google::Protobuf.discard_unknown(msg)
  1295. *
  1296. * Discard unknown fields in the given message object and recursively discard
  1297. * unknown fields in submessages.
  1298. */
  1299. VALUE Google_Protobuf_discard_unknown(VALUE self, VALUE msg_rb) {
  1300. VALUE klass = CLASS_OF(msg_rb);
  1301. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  1302. Descriptor* desc = ruby_to_Descriptor(descriptor);
  1303. if (klass == cRepeatedField || klass == cMap) {
  1304. rb_raise(rb_eArgError, "Expected proto msg for discard unknown.");
  1305. } else {
  1306. discard_unknown(msg_rb, desc);
  1307. }
  1308. return Qnil;
  1309. }