| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737 | // Protocol Buffers - Google's data interchange format// Copyright 2008 Google Inc.// http://code.google.com/p/protobuf///// Licensed under the Apache License, Version 2.0 (the "License");// you may not use this file except in compliance with the License.// You may obtain a copy of the License at////      http://www.apache.org/licenses/LICENSE-2.0//// Unless required by applicable law or agreed to in writing, software// distributed under the License is distributed on an "AS IS" BASIS,// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.// See the License for the specific language governing permissions and// limitations under the License.using System;using System.IO;using System.Text;using Google.ProtocolBuffers.Descriptors;namespace Google.ProtocolBuffers {  /// <summary>  /// Encodes and writes protocol message fields.  /// </summary>  /// <remarks>  /// This class contains two kinds of methods:  methods that write specific  /// protocol message constructs and field types (e.g. WriteTag and  /// WriteInt32) and methods that write low-level values (e.g.  /// WriteRawVarint32 and WriteRawBytes).  If you are writing encoded protocol  /// messages, you should use the former methods, but if you are writing some  /// other format of your own design, use the latter. The names of the former  /// methods are taken from the protocol buffer type names, not .NET types.  /// (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)  /// </remarks>  public sealed class CodedOutputStream {    /// <summary>    /// The buffer size used by CreateInstance(Stream).    /// </summary>    public static readonly int DefaultBufferSize = 4096;    private readonly byte[] buffer;    private readonly int limit;    private int position;    private readonly Stream output;    #region Construction    private CodedOutputStream(byte[] buffer, int offset, int length) {      this.output = null;      this.buffer = buffer;      this.position = offset;      this.limit = offset + length;    }    private CodedOutputStream(Stream output, byte[] buffer) {      this.output = output;      this.buffer = buffer;      this.position = 0;      this.limit = buffer.Length;    }    /// <summary>    /// Creates a new CodedOutputStream which write to the given stream.    /// </summary>    public static CodedOutputStream CreateInstance(Stream output) {      return CreateInstance(output, DefaultBufferSize);    }    /// <summary>    /// Creates a new CodedOutputStream which write to the given stream and uses    /// the specified buffer size.    /// </summary>    public static CodedOutputStream CreateInstance(Stream output, int bufferSize) {      return new CodedOutputStream(output, new byte[bufferSize]);    }    /// <summary>    /// Creates a new CodedOutputStream that writes directly to the given    /// byte array. If more bytes are written than fit in the array,    /// OutOfSpaceException will be thrown.    /// </summary>    public static CodedOutputStream CreateInstance(byte[] flatArray) {      return CreateInstance(flatArray, 0, flatArray.Length);    }    /// <summary>    /// Creates a new CodedOutputStream that writes directly to the given    /// byte array slice. If more bytes are written than fit in the array,    /// OutOfSpaceException will be thrown.    /// </summary>    public static CodedOutputStream CreateInstance(byte[] flatArray, int offset, int length) {      return new CodedOutputStream(flatArray, offset, length);    }    #endregion    #region Writing of tags etc    /// <summary>    /// Writes a double field value, including tag, to the stream.    /// </summary>    public void WriteDouble(int fieldNumber, double value) {      WriteTag(fieldNumber, WireFormat.WireType.Fixed64);      WriteRawLittleEndian64((ulong)BitConverter.DoubleToInt64Bits(value));    }    /// <summary>    /// Writes a float field value, including tag, to the stream.    /// </summary>    public void WriteFloat(int fieldNumber, float value) {      WriteTag(fieldNumber, WireFormat.WireType.Fixed32);      // FIXME: How do we convert a single to 32 bits? (Without unsafe code)      //WriteRawLittleEndian32(BitConverter.SingleT(value));    }    /// <summary>    /// Writes a uint64 field value, including tag, to the stream.    /// </summary>    public void WriteUInt64(int fieldNumber, ulong value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      WriteRawVarint64(value);    }    /// <summary>    /// Writes an int64 field value, including tag, to the stream.    /// </summary>    public void WriteInt64(int fieldNumber, long value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      WriteRawVarint64((ulong)value);    }    /// <summary>    /// Writes an int32 field value, including tag, to the stream.    /// </summary>    public void WriteInt32(int fieldNumber, int value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      if (value >= 0) {        WriteRawVarint32((uint)value);      } else {        // Must sign-extend.        WriteRawVarint64((ulong)value);      }    }    /// <summary>    /// Writes a fixed64 field value, including tag, to the stream.    /// </summary>    public void WriteFixed64(int fieldNumber, ulong value) {      WriteTag(fieldNumber, WireFormat.WireType.Fixed64);      WriteRawLittleEndian64(value);    }    /// <summary>    /// Writes a fixed32 field value, including tag, to the stream.    /// </summary>    public void WriteFixed32(int fieldNumber, uint value) {      WriteTag(fieldNumber, WireFormat.WireType.Fixed32);      WriteRawLittleEndian32(value);    }    /// <summary>    /// Writes a bool field value, including tag, to the stream.    /// </summary>    public void WriteBool(int fieldNumber, bool value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      WriteRawByte(value ? (byte)1 : (byte)0);    }    /// <summary>    /// Writes a string field value, including tag, to the stream.    /// </summary>    public void WriteString(int fieldNumber, string value) {      WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);      // TODO(jonskeet): Optimise this if possible      // Unfortunately there does not appear to be any way to tell Java to encode      // UTF-8 directly into our buffer, so we have to let it create its own byte      // array and then copy. In .NET we can do the same thing very easily,      // so we don't need to worry about only writing one buffer at a time.      // We can optimise later.      byte[] bytes = Encoding.UTF8.GetBytes(value);      WriteRawVarint32((uint)bytes.Length);      WriteRawBytes(bytes);    }    /// <summary>    /// Writes a group field value, including tag, to the stream.    /// </summary>    public void WriteGroup(int fieldNumber, IMessage value) {      WriteTag(fieldNumber, WireFormat.WireType.StartGroup);      value.WriteTo(this);      WriteTag(fieldNumber, WireFormat.WireType.EndGroup);    }    public void WriteUnknownGroup(int fieldNumber, UnknownFieldSet value) {      WriteTag(fieldNumber, WireFormat.WireType.StartGroup);      value.WriteTo(this);      WriteTag(fieldNumber, WireFormat.WireType.EndGroup);    }    public void WriteMessage(int fieldNumber, IMessage value) {      WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);      WriteRawVarint32((uint)value.SerializedSize);      value.WriteTo(this);    }    public void WriteBytes(int fieldNumber, ByteString value) {      // TODO(jonskeet): Optimise this! (No need to copy the bytes twice.)      byte[] bytes = value.ToByteArray();      WriteRawVarint32((uint)bytes.Length);      WriteRawBytes(bytes);    }    public void WriteUInt32(int fieldNumber, uint value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      WriteRawVarint32(value);    }    public void WriteEnum(int fieldNumber, int value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      WriteRawVarint32((uint)value);    }    public void WriteSFixed32(int fieldNumber, int value) {      WriteTag(fieldNumber, WireFormat.WireType.Fixed32);      WriteRawVarint32((uint)value);    }    public void WriteSFixed64(int fieldNumber, long value) {      WriteTag(fieldNumber, WireFormat.WireType.Fixed64);      WriteRawVarint64((ulong)value);    }    public void WriteSInt32(int fieldNumber, int value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      WriteRawVarint32(EncodeZigZag32(value));    }    public void WriteSInt64(int fieldNumber, long value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      WriteRawVarint64(EncodeZigZag64(value));    }    public void WriteMessageSetExtension(int fieldNumber, IMessage value) {      WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.StartGroup);      WriteUInt32(WireFormat.MessageSetField.TypeID, (uint)fieldNumber);      WriteMessage(WireFormat.MessageSetField.Message, value);      WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.EndGroup);    }    public void WriteRawMessageSetExtension(int fieldNumber, ByteString value) {      WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.StartGroup);      WriteUInt32(WireFormat.MessageSetField.TypeID, (uint)fieldNumber);      WriteBytes(WireFormat.MessageSetField.Message, value);      WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.EndGroup);    }    public void WriteField(FieldType fieldType, int fieldNumber, object value) {      switch (fieldType) {        case FieldType.Double: WriteDouble(fieldNumber, (double)value); break;        case FieldType.Float: WriteFloat(fieldNumber, (float)value); break;        case FieldType.Int64: WriteInt64(fieldNumber, (long)value); break;        case FieldType.UInt64: WriteUInt64(fieldNumber, (ulong)value); break;        case FieldType.Int32: WriteInt32(fieldNumber, (int)value); break;        case FieldType.Fixed64: WriteFixed64(fieldNumber, (ulong)value); break;        case FieldType.Fixed32: WriteFixed32(fieldNumber, (uint)value); break;        case FieldType.Bool: WriteBool(fieldNumber, (bool)value); break;        case FieldType.String: WriteString(fieldNumber, (string)value); break;        case FieldType.Group: WriteGroup(fieldNumber, (IMessage)value); break;        case FieldType.Message: WriteMessage(fieldNumber, (IMessage)value); break;        case FieldType.Bytes: WriteBytes(fieldNumber, (ByteString)value); break;        case FieldType.UInt32: WriteUInt32(fieldNumber, (uint)value); break;        case FieldType.SFixed32: WriteSFixed32(fieldNumber, (int)value); break;        case FieldType.SFixed64: WriteSFixed64(fieldNumber, (long)value); break;        case FieldType.SInt32: WriteSInt32(fieldNumber, (int)value); break;        case FieldType.SInt64: WriteSInt64(fieldNumber, (long)value); break;        case FieldType.Enum: WriteEnum(fieldNumber, ((EnumValueDescriptor)value).Number);          break;      }    }    #endregion    #region Underlying writing primitives    /// <summary>    /// Encodes and writes a tag.    /// </summary>    public void WriteTag(int fieldNumber, WireFormat.WireType type) {      WriteRawVarint32(WireFormat.MakeTag(fieldNumber, type));    }    public void WriteRawVarint32(uint value) {      while (true) {        if ((value & ~0x7F) == 0) {          WriteRawByte(value);          return;        } else {          WriteRawByte((value & 0x7F) | 0x80);          value >>= 7;        }      }    }    public void WriteRawVarint64(ulong value) {      while (true) {        if ((value & ~0x7FUL) == 0) {          WriteRawByte((uint)value);          return;        } else {          WriteRawByte(((uint)value & 0x7F) | 0x80);          value >>= 7;        }      }    }    public void WriteRawLittleEndian32(uint value) {      WriteRawByte((byte)value);      WriteRawByte((byte)(value >> 8));      WriteRawByte((byte)(value >> 16));      WriteRawByte((byte)(value >> 24));    }    public void WriteRawLittleEndian64(ulong value) {      WriteRawByte((byte)value);      WriteRawByte((byte)(value >> 8));      WriteRawByte((byte)(value >> 16));      WriteRawByte((byte)(value >> 24));      WriteRawByte((byte)(value >> 32));      WriteRawByte((byte)(value >> 40));      WriteRawByte((byte)(value >> 48));      WriteRawByte((byte)(value >> 56));    }    public void WriteRawByte(byte value) {      if (position == limit) {        RefreshBuffer();      }      buffer[position++] = value;    }    public void WriteRawByte(uint value) {      WriteRawByte((byte)value);    }    /// <summary>    /// Writes out an array of bytes.    /// </summary>    public void WriteRawBytes(byte[] value) {      WriteRawBytes(value, 0, value.Length);    }    /// <summary>    /// Writes out part of an array of bytes.    /// </summary>    public void WriteRawBytes(byte[] value, int offset, int length) {      if (limit - position >= length) {        Array.Copy(value, offset, buffer, position, length);        // We have room in the current buffer.        position += length;      } else {        // Write extends past current buffer.  Fill the rest of this buffer and        // flush.        int bytesWritten = limit - position;        Array.Copy(value, offset, buffer, position, bytesWritten);        offset += bytesWritten;        length -= bytesWritten;        position = limit;        RefreshBuffer();        // Now deal with the rest.        // Since we have an output stream, this is our buffer        // and buffer offset == 0        if (length <= limit) {          // Fits in new buffer.          Array.Copy(value, offset, buffer, 0, length);          position = length;        } else {          // Write is very big.  Let's do it all at once.          output.Write(value, offset, length);        }      }    }    #endregion    #region Size computations    const int LittleEndian64Size = 8;    const int LittleEndian32Size = 4;    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// double field, including the tag.    /// </summary>    public static int ComputeDoubleSize(int fieldNumber, double value) {      return ComputeTagSize(fieldNumber) + LittleEndian64Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// float field, including the tag.    /// </summary>    public static int ComputeFloatSize(int fieldNumber, float value) {      return ComputeTagSize(fieldNumber) + LittleEndian32Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// uint64 field, including the tag.    /// </summary>    public static int ComputeUInt64Size(int fieldNumber, ulong value) {      return ComputeTagSize(fieldNumber) + ComputeRawVarint64Size(value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// int64 field, including the tag.    /// </summary>    public static int ComputeInt64Size(int fieldNumber, long value) {      return ComputeTagSize(fieldNumber) + ComputeRawVarint64Size((ulong)value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// int32 field, including the tag.    /// </summary>    public static int ComputeInt32Size(int fieldNumber, int value) {      if (value >= 0) {        return ComputeTagSize(fieldNumber) + ComputeRawVarint32Size((uint)value);      } else {        // Must sign-extend.        return ComputeTagSize(fieldNumber) + 10;      }    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// fixed64 field, including the tag.    /// </summary>    public static int ComputeFixed64Size(int fieldNumber, long value) {      return ComputeTagSize(fieldNumber) + LittleEndian64Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// fixed32 field, including the tag.    /// </summary>    public static int ComputeFixed32Size(int fieldNumber, int value) {      return ComputeTagSize(fieldNumber) + LittleEndian32Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// bool field, including the tag.    /// </summary>    public static int ComputeBoolSize(int fieldNumber, bool value) {      return ComputeTagSize(fieldNumber) + 1;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// string field, including the tag.    /// </summary>    public static int ComputeStringSize(int fieldNumber, String value) {      int byteArraySize = Encoding.UTF8.GetByteCount(value);      return ComputeTagSize(fieldNumber) +             ComputeRawVarint32Size((uint)byteArraySize) +             byteArraySize;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// group field, including the tag.    /// </summary>    public static int ComputeGroupSize(int fieldNumber, IMessage value) {      return ComputeTagSize(fieldNumber) * 2 + value.SerializedSize;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// group field represented by an UnknownFieldSet, including the tag.    /// </summary>    public static int ComputeUnknownGroupSize(int fieldNumber,                                              UnknownFieldSet value) {      return ComputeTagSize(fieldNumber) * 2 + value.SerializedSize;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// embedded message field, including the tag.    /// </summary>    public static int ComputeMessageSize(int fieldNumber, IMessage value) {      int size = value.SerializedSize;      return ComputeTagSize(fieldNumber) + ComputeRawVarint32Size((uint)size) + size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// bytes field, including the tag.    /// </summary>    public static int ComputeBytesSize(int fieldNumber, ByteString value) {      return ComputeTagSize(fieldNumber) +             ComputeRawVarint32Size((uint)value.Length) +             value.Length;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// uint32 field, including the tag.    /// </summary>    public static int ComputeUInt32Size(int fieldNumber, uint value) {      return ComputeTagSize(fieldNumber) + ComputeRawVarint32Size(value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// enum field, including the tag. The caller is responsible for    /// converting the enum value to its numeric value.    /// </summary>    public static int ComputeEnumSize(int fieldNumber, int value) {      return ComputeTagSize(fieldNumber) + ComputeRawVarint32Size((uint)value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// sfixed32 field, including the tag.    /// </summary>    public static int ComputeSFixed32Size(int fieldNumber, int value) {      return ComputeTagSize(fieldNumber) + LittleEndian32Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// sfixed64 field, including the tag.    /// </summary>    public static int ComputeSFixed64Size(int fieldNumber, long value) {      return ComputeTagSize(fieldNumber) + LittleEndian64Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// sint32 field, including the tag.    /// </summary>    public static int ComputeSInt32Size(int fieldNumber, int value) {      return ComputeTagSize(fieldNumber) +             ComputeRawVarint32Size(EncodeZigZag32(value));    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// sint64 field, including the tag.    /// </summary>    public static int ComputeSInt64Size(int fieldNumber, long value) {      return ComputeTagSize(fieldNumber) +             ComputeRawVarint64Size(EncodeZigZag64(value));    }    /*     * Compute the number of bytes that would be needed to encode a     * MessageSet extension to the stream.  For historical reasons,     * the wire format differs from normal fields.     */    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// MessageSet extension to the stream. For historical reasons,    /// the wire format differs from normal fields.    /// </summary>    public static int ComputeMessageSetExtensionSize(int fieldNumber, IMessage value) {      return ComputeTagSize(WireFormat.MessageSetField.Item) * 2 +             ComputeUInt32Size(WireFormat.MessageSetField.TypeID, (uint) fieldNumber) +             ComputeMessageSize(WireFormat.MessageSetField.Message, value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// unparsed MessageSet extension field to the stream. For    /// historical reasons, the wire format differs from normal fields.    /// </summary>    public static int ComputeRawMessageSetExtensionSize(int fieldNumber, ByteString value) {      return ComputeTagSize(WireFormat.MessageSetField.Item) * 2 +             ComputeUInt32Size(WireFormat.MessageSetField.TypeID, (uint) fieldNumber) +             ComputeBytesSize(WireFormat.MessageSetField.Message, value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a varint.    /// </summary>    public static int ComputeRawVarint32Size(uint value) {      if ((value & (0xffffffff << 7)) == 0) return 1;      if ((value & (0xffffffff << 14)) == 0) return 2;      if ((value & (0xffffffff << 21)) == 0) return 3;      if ((value & (0xffffffff << 28)) == 0) return 4;      return 5;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a varint.    /// </summary>    public static int ComputeRawVarint64Size(ulong value) {      if ((value & (0xffffffffffffffffL << 7)) == 0) return 1;      if ((value & (0xffffffffffffffffL << 14)) == 0) return 2;      if ((value & (0xffffffffffffffffL << 21)) == 0) return 3;      if ((value & (0xffffffffffffffffL << 28)) == 0) return 4;      if ((value & (0xffffffffffffffffL << 35)) == 0) return 5;      if ((value & (0xffffffffffffffffL << 42)) == 0) return 6;      if ((value & (0xffffffffffffffffL << 49)) == 0) return 7;      if ((value & (0xffffffffffffffffL << 56)) == 0) return 8;      if ((value & (0xffffffffffffffffL << 63)) == 0) return 9;      return 10;    }    /*     * Compute the number of bytes that would be needed to encode a     * field of arbitrary type, including tag, to the stream.     *     * @param type   The field's type.     * @param number The field's number.     * @param value  Object representing the field's value.  Must be of the exact     *               type which would be returned by     *               {@link Message#getField(FieldDescriptor)} for     *               this field.     */    public static int ComputeFieldSize(FieldType fieldType, int fieldNumber, Object value) {      switch (fieldType) {        case FieldType.Double: return ComputeDoubleSize(fieldNumber, (double)value);        case FieldType.Float: return ComputeFloatSize(fieldNumber, (float)value);        case FieldType.Int64: return ComputeInt64Size(fieldNumber, (long)value);        case FieldType.UInt64: return ComputeUInt64Size(fieldNumber, (ulong)value);        case FieldType.Int32: return ComputeInt32Size(fieldNumber, (int)value);        case FieldType.Fixed64: return ComputeFixed64Size(fieldNumber, (long)value);        case FieldType.Fixed32: return ComputeFixed32Size(fieldNumber, (int)value);        case FieldType.Bool: return ComputeBoolSize(fieldNumber, (bool)value);        case FieldType.String: return ComputeStringSize(fieldNumber, (string)value);        case FieldType.Group: return ComputeGroupSize(fieldNumber, (IMessage)value);        case FieldType.Message: return ComputeMessageSize(fieldNumber, (IMessage)value);        case FieldType.Bytes: return ComputeBytesSize(fieldNumber, (ByteString)value);        case FieldType.UInt32: return ComputeUInt32Size(fieldNumber, (uint)value);        case FieldType.SFixed32: return ComputeSFixed32Size(fieldNumber, (int)value);        case FieldType.SFixed64: return ComputeSFixed64Size(fieldNumber, (long)value);        case FieldType.SInt32: return ComputeSInt32Size(fieldNumber, (int)value);        case FieldType.SInt64: return ComputeSInt64Size(fieldNumber, (long)value);        case FieldType.Enum: return ComputeEnumSize(fieldNumber, ((EnumValueDescriptor)value).Number);        default:          throw new ArgumentOutOfRangeException("Invalid field type " + fieldType);      }    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a tag.    /// </summary>    public static int ComputeTagSize(int fieldNumber) {      return ComputeRawVarint32Size(WireFormat.MakeTag(fieldNumber, 0));    }    #endregion    /// <summary>    /// Encode a 32-bit value with ZigZag encoding.    /// </summary>    /// <remarks>    /// ZigZag encodes signed integers into values that can be efficiently    /// encoded with varint.  (Otherwise, negative values must be     /// sign-extended to 64 bits to be varint encoded, thus always taking    /// 10 bytes on the wire.)    /// </remarks>    public static uint EncodeZigZag32(int n) {      // Note:  the right-shift must be arithmetic      return (uint)((n << 1) ^ (n >> 31));    }    /// <summary>    /// Encode a 64-bit value with ZigZag encoding.    /// </summary>    /// <remarks>    /// ZigZag encodes signed integers into values that can be efficiently    /// encoded with varint.  (Otherwise, negative values must be     /// sign-extended to 64 bits to be varint encoded, thus always taking    /// 10 bytes on the wire.)    /// </remarks>    public static ulong EncodeZigZag64(long n) {      return (ulong)((n << 1) ^ (n >> 63));    }    private void RefreshBuffer() {      if (output == null) {        // We're writing to a single buffer.        throw new OutOfSpaceException();      }      // Since we have an output stream, this is our buffer      // and buffer offset == 0      output.Write(buffer, 0, position);      position = 0;    }    /// <summary>    /// Indicates that a CodedOutputStream wrapping a flat byte array    /// ran out of space.    /// </summary>    public class OutOfSpaceException : IOException {      internal OutOfSpaceException()        : base("CodedOutputStream was writing to a flat byte array and ran out of space.") {      }    }    public void Flush() {      if (output != null) {        RefreshBuffer();      }    }    /// <summary>    /// Verifies that SpaceLeft returns zero. It's common to create a byte array    /// that is exactly big enough to hold a message, then write to it with    /// a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that    /// the message was actually as big as expected, which can help bugs.    /// </summary>    public void CheckNoSpaceLeft() {      if (SpaceLeft != 0) {        throw new InvalidOperationException("Did not write as much data as expected.");      }    }    /// <summary>    /// If writing to a flat array, returns the space left in the array. Otherwise,    /// throws an InvalidOperationException.    /// </summary>    public int SpaceLeft {      get {        if (output == null) {          return limit - position;        } else {          throw new InvalidOperationException(            "SpaceLeft can only be called on CodedOutputStreams that are " +            "writing to a flat array.");        }      }    }  }}
 |