encode_decode.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548
  1. // Protocol Buffers - Google's data interchange format
  2. // Copyright 2014 Google Inc. All rights reserved.
  3. // https://developers.google.com/protocol-buffers/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are
  7. // met:
  8. //
  9. // * Redistributions of source code must retain the above copyright
  10. // notice, this list of conditions and the following disclaimer.
  11. // * Redistributions in binary form must reproduce the above
  12. // copyright notice, this list of conditions and the following disclaimer
  13. // in the documentation and/or other materials provided with the
  14. // distribution.
  15. // * Neither the name of Google Inc. nor the names of its
  16. // contributors may be used to endorse or promote products derived from
  17. // this software without specific prior written permission.
  18. //
  19. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  20. // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  21. // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  22. // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  23. // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  24. // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  25. // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  26. // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  27. // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  28. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  29. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30. #include "protobuf.h"
  31. // This function is equivalent to rb_str_cat(), but unlike the real
  32. // rb_str_cat(), it doesn't leak memory in some versions of Ruby.
  33. // For more information, see:
  34. // https://bugs.ruby-lang.org/issues/11328
  35. VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) {
  36. char *p;
  37. size_t oldlen = RSTRING_LEN(rb_str);
  38. rb_str_modify_expand(rb_str, len);
  39. p = RSTRING_PTR(rb_str);
  40. memcpy(p + oldlen, str, len);
  41. rb_str_set_len(rb_str, oldlen + len);
  42. return rb_str;
  43. }
  44. // The code below also comes from upb's prototype Ruby binding, developed by
  45. // haberman@.
  46. /* stringsink *****************************************************************/
  47. static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {
  48. stringsink *sink = _sink;
  49. sink->len = 0;
  50. return sink;
  51. }
  52. static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,
  53. size_t len, const upb_bufhandle *handle) {
  54. stringsink *sink = _sink;
  55. size_t new_size = sink->size;
  56. UPB_UNUSED(hd);
  57. UPB_UNUSED(handle);
  58. while (sink->len + len > new_size) {
  59. new_size *= 2;
  60. }
  61. if (new_size != sink->size) {
  62. sink->ptr = realloc(sink->ptr, new_size);
  63. sink->size = new_size;
  64. }
  65. memcpy(sink->ptr + sink->len, ptr, len);
  66. sink->len += len;
  67. return len;
  68. }
  69. void stringsink_init(stringsink *sink) {
  70. upb_byteshandler_init(&sink->handler);
  71. upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);
  72. upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);
  73. upb_bytessink_reset(&sink->sink, &sink->handler, sink);
  74. sink->size = 32;
  75. sink->ptr = malloc(sink->size);
  76. sink->len = 0;
  77. }
  78. void stringsink_uninit(stringsink *sink) {
  79. free(sink->ptr);
  80. }
  81. // -----------------------------------------------------------------------------
  82. // Parsing.
  83. // -----------------------------------------------------------------------------
  84. #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs)
  85. typedef struct {
  86. size_t ofs;
  87. int32_t hasbit;
  88. } field_handlerdata_t;
  89. // Creates a handlerdata that contains the offset and the hasbit for the field
  90. static const void* newhandlerdata(upb_handlers* h, uint32_t ofs, int32_t hasbit) {
  91. field_handlerdata_t *hd = ALLOC(field_handlerdata_t);
  92. hd->ofs = ofs;
  93. hd->hasbit = hasbit;
  94. upb_handlers_addcleanup(h, hd, xfree);
  95. return hd;
  96. }
  97. typedef struct {
  98. size_t ofs;
  99. int32_t hasbit;
  100. VALUE subklass;
  101. } submsg_handlerdata_t;
  102. // Creates a handlerdata that contains offset and submessage type information.
  103. static const void *newsubmsghandlerdata(upb_handlers* h,
  104. uint32_t ofs,
  105. int32_t hasbit,
  106. VALUE subklass) {
  107. submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t);
  108. hd->ofs = ofs;
  109. hd->hasbit = hasbit;
  110. hd->subklass = subklass;
  111. upb_handlers_addcleanup(h, hd, xfree);
  112. return hd;
  113. }
  114. typedef struct {
  115. size_t ofs; // union data slot
  116. size_t case_ofs; // oneof_case field
  117. uint32_t oneof_case_num; // oneof-case number to place in oneof_case field
  118. VALUE subklass;
  119. } oneof_handlerdata_t;
  120. static const void *newoneofhandlerdata(upb_handlers *h,
  121. uint32_t ofs,
  122. uint32_t case_ofs,
  123. const upb_fielddef *f,
  124. const Descriptor* desc) {
  125. oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t);
  126. hd->ofs = ofs;
  127. hd->case_ofs = case_ofs;
  128. // We reuse the field tag number as a oneof union discriminant tag. Note that
  129. // we don't expose these numbers to the user, so the only requirement is that
  130. // we have some unique ID for each union case/possibility. The field tag
  131. // numbers are already present and are easy to use so there's no reason to
  132. // create a separate ID space. In addition, using the field tag number here
  133. // lets us easily look up the field in the oneof accessor.
  134. hd->oneof_case_num = upb_fielddef_number(f);
  135. if (is_value_field(f)) {
  136. hd->oneof_case_num |= ONEOF_CASE_MASK;
  137. }
  138. hd->subklass = field_type_class(desc->layout, f);
  139. upb_handlers_addcleanup(h, hd, xfree);
  140. return hd;
  141. }
  142. // A handler that starts a repeated field. Gets the Repeated*Field instance for
  143. // this field (such an instance always exists even in an empty message).
  144. static void *startseq_handler(void* closure, const void* hd) {
  145. MessageHeader* msg = closure;
  146. const size_t *ofs = hd;
  147. return (void*)DEREF(msg, *ofs, VALUE);
  148. }
  149. // Handlers that append primitive values to a repeated field.
  150. #define DEFINE_APPEND_HANDLER(type, ctype) \
  151. static bool append##type##_handler(void *closure, const void *hd, \
  152. ctype val) { \
  153. VALUE ary = (VALUE)closure; \
  154. RepeatedField_push_native(ary, &val); \
  155. return true; \
  156. }
  157. DEFINE_APPEND_HANDLER(bool, bool)
  158. DEFINE_APPEND_HANDLER(int32, int32_t)
  159. DEFINE_APPEND_HANDLER(uint32, uint32_t)
  160. DEFINE_APPEND_HANDLER(float, float)
  161. DEFINE_APPEND_HANDLER(int64, int64_t)
  162. DEFINE_APPEND_HANDLER(uint64, uint64_t)
  163. DEFINE_APPEND_HANDLER(double, double)
  164. // Appends a string to a repeated field.
  165. static void* appendstr_handler(void *closure,
  166. const void *hd,
  167. size_t size_hint) {
  168. VALUE ary = (VALUE)closure;
  169. VALUE str = rb_str_new2("");
  170. rb_enc_associate(str, kRubyStringUtf8Encoding);
  171. RepeatedField_push_native(ary, &str);
  172. return (void*)str;
  173. }
  174. static void set_hasbit(void *closure, int32_t hasbit) {
  175. if (hasbit > 0) {
  176. uint8_t* storage = closure;
  177. storage[hasbit/8] |= 1 << (hasbit % 8);
  178. }
  179. }
  180. // Appends a 'bytes' string to a repeated field.
  181. static void* appendbytes_handler(void *closure,
  182. const void *hd,
  183. size_t size_hint) {
  184. VALUE ary = (VALUE)closure;
  185. VALUE str = rb_str_new2("");
  186. rb_enc_associate(str, kRubyString8bitEncoding);
  187. RepeatedField_push_native(ary, &str);
  188. return (void*)str;
  189. }
  190. // Sets a non-repeated string field in a message.
  191. static void* str_handler(void *closure,
  192. const void *hd,
  193. size_t size_hint) {
  194. MessageHeader* msg = closure;
  195. const field_handlerdata_t *fieldhandler = hd;
  196. VALUE str = rb_str_new2("");
  197. rb_enc_associate(str, kRubyStringUtf8Encoding);
  198. DEREF(msg, fieldhandler->ofs, VALUE) = str;
  199. set_hasbit(closure, fieldhandler->hasbit);
  200. return (void*)str;
  201. }
  202. // Sets a non-repeated 'bytes' field in a message.
  203. static void* bytes_handler(void *closure,
  204. const void *hd,
  205. size_t size_hint) {
  206. MessageHeader* msg = closure;
  207. const field_handlerdata_t *fieldhandler = hd;
  208. VALUE str = rb_str_new2("");
  209. rb_enc_associate(str, kRubyString8bitEncoding);
  210. DEREF(msg, fieldhandler->ofs, VALUE) = str;
  211. set_hasbit(closure, fieldhandler->hasbit);
  212. return (void*)str;
  213. }
  214. static size_t stringdata_handler(void* closure, const void* hd,
  215. const char* str, size_t len,
  216. const upb_bufhandle* handle) {
  217. VALUE rb_str = (VALUE)closure;
  218. noleak_rb_str_cat(rb_str, str, len);
  219. return len;
  220. }
  221. static bool stringdata_end_handler(void* closure, const void* hd) {
  222. VALUE rb_str = (VALUE)closure;
  223. rb_obj_freeze(rb_str);
  224. return true;
  225. }
  226. static bool appendstring_end_handler(void* closure, const void* hd) {
  227. VALUE rb_str = (VALUE)closure;
  228. rb_obj_freeze(rb_str);
  229. return true;
  230. }
  231. // Appends a submessage to a repeated field (a regular Ruby array for now).
  232. static void *appendsubmsg_handler(void *closure, const void *hd) {
  233. VALUE ary = (VALUE)closure;
  234. const submsg_handlerdata_t *submsgdata = hd;
  235. MessageHeader* submsg;
  236. VALUE submsg_rb = rb_class_new_instance(0, NULL, submsgdata->subklass);
  237. RepeatedField_push(ary, submsg_rb);
  238. TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
  239. return submsg;
  240. }
  241. // Sets a non-repeated submessage field in a message.
  242. static void *submsg_handler(void *closure, const void *hd) {
  243. MessageHeader* msg = closure;
  244. const submsg_handlerdata_t* submsgdata = hd;
  245. VALUE submsg_rb;
  246. MessageHeader* submsg;
  247. if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) {
  248. DEREF(msg, submsgdata->ofs, VALUE) =
  249. rb_class_new_instance(0, NULL, submsgdata->subklass);
  250. }
  251. set_hasbit(closure, submsgdata->hasbit);
  252. submsg_rb = DEREF(msg, submsgdata->ofs, VALUE);
  253. TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
  254. return submsg;
  255. }
  256. // Handler data for startmap/endmap handlers.
  257. typedef struct {
  258. size_t ofs;
  259. upb_fieldtype_t key_field_type;
  260. upb_fieldtype_t value_field_type;
  261. VALUE subklass;
  262. } map_handlerdata_t;
  263. // Temporary frame for map parsing: at the beginning of a map entry message, a
  264. // submsg handler allocates a frame to hold (i) a reference to the Map object
  265. // into which this message will be inserted and (ii) storage slots to
  266. // temporarily hold the key and value for this map entry until the end of the
  267. // submessage. When the submessage ends, another handler is called to insert the
  268. // value into the map.
  269. typedef struct {
  270. VALUE map;
  271. const map_handlerdata_t* handlerdata;
  272. char key_storage[NATIVE_SLOT_MAX_SIZE];
  273. char value_storage[NATIVE_SLOT_MAX_SIZE];
  274. } map_parse_frame_t;
  275. static void MapParseFrame_mark(void* _self) {
  276. map_parse_frame_t* frame = _self;
  277. // This shouldn't strictly be necessary since this should be rooted by the
  278. // message itself, but it can't hurt.
  279. rb_gc_mark(frame->map);
  280. native_slot_mark(frame->handlerdata->key_field_type, &frame->key_storage);
  281. native_slot_mark(frame->handlerdata->value_field_type, &frame->value_storage);
  282. }
  283. void MapParseFrame_free(void* self) {
  284. xfree(self);
  285. }
  286. rb_data_type_t MapParseFrame_type = {
  287. "MapParseFrame",
  288. { MapParseFrame_mark, MapParseFrame_free, NULL },
  289. };
  290. static map_parse_frame_t* map_push_frame(VALUE map,
  291. const map_handlerdata_t* handlerdata) {
  292. map_parse_frame_t* frame = ALLOC(map_parse_frame_t);
  293. frame->handlerdata = handlerdata;
  294. frame->map = map;
  295. native_slot_init(handlerdata->key_field_type, &frame->key_storage);
  296. native_slot_init(handlerdata->value_field_type, &frame->value_storage);
  297. Map_set_frame(map,
  298. TypedData_Wrap_Struct(rb_cObject, &MapParseFrame_type, frame));
  299. return frame;
  300. }
  301. // Handler to begin a map entry: allocates a temporary frame. This is the
  302. // 'startsubmsg' handler on the msgdef that contains the map field.
  303. static void *startmapentry_handler(void *closure, const void *hd) {
  304. MessageHeader* msg = closure;
  305. const map_handlerdata_t* mapdata = hd;
  306. VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE);
  307. return map_push_frame(map_rb, mapdata);
  308. }
  309. // Handler to end a map entry: inserts the value defined during the message into
  310. // the map. This is the 'endmsg' handler on the map entry msgdef.
  311. static bool endmap_handler(void *closure, const void *hd, upb_status* s) {
  312. map_parse_frame_t* frame = closure;
  313. const map_handlerdata_t* mapdata = hd;
  314. VALUE key = native_slot_get(
  315. mapdata->key_field_type, Qnil,
  316. &frame->key_storage);
  317. VALUE value = native_slot_get(
  318. mapdata->value_field_type, mapdata->subklass,
  319. &frame->value_storage);
  320. Map_index_set(frame->map, key, value);
  321. Map_set_frame(frame->map, Qnil);
  322. return true;
  323. }
  324. // Allocates a new map_handlerdata_t given the map entry message definition. If
  325. // the offset of the field within the parent message is also given, that is
  326. // added to the handler data as well. Note that this is called *twice* per map
  327. // field: once in the parent message handler setup when setting the startsubmsg
  328. // handler and once in the map entry message handler setup when setting the
  329. // key/value and endmsg handlers. The reason is that there is no easy way to
  330. // pass the handlerdata down to the sub-message handler setup.
  331. static map_handlerdata_t* new_map_handlerdata(
  332. size_t ofs,
  333. const upb_msgdef* mapentry_def,
  334. const Descriptor* desc) {
  335. const upb_fielddef* key_field;
  336. const upb_fielddef* value_field;
  337. map_handlerdata_t* hd = ALLOC(map_handlerdata_t);
  338. hd->ofs = ofs;
  339. key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD);
  340. assert(key_field != NULL);
  341. hd->key_field_type = upb_fielddef_type(key_field);
  342. value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD);
  343. assert(value_field != NULL);
  344. hd->value_field_type = upb_fielddef_type(value_field);
  345. hd->subklass = field_type_class(desc->layout, value_field);
  346. return hd;
  347. }
  348. // Handlers that set primitive values in oneofs.
  349. #define DEFINE_ONEOF_HANDLER(type, ctype) \
  350. static bool oneof##type##_handler(void *closure, const void *hd, \
  351. ctype val) { \
  352. const oneof_handlerdata_t *oneofdata = hd; \
  353. DEREF(closure, oneofdata->case_ofs, uint32_t) = \
  354. oneofdata->oneof_case_num; \
  355. DEREF(closure, oneofdata->ofs, ctype) = val; \
  356. return true; \
  357. }
  358. DEFINE_ONEOF_HANDLER(bool, bool)
  359. DEFINE_ONEOF_HANDLER(int32, int32_t)
  360. DEFINE_ONEOF_HANDLER(uint32, uint32_t)
  361. DEFINE_ONEOF_HANDLER(float, float)
  362. DEFINE_ONEOF_HANDLER(int64, int64_t)
  363. DEFINE_ONEOF_HANDLER(uint64, uint64_t)
  364. DEFINE_ONEOF_HANDLER(double, double)
  365. #undef DEFINE_ONEOF_HANDLER
  366. // Handlers for strings in a oneof.
  367. static void *oneofstr_handler(void *closure,
  368. const void *hd,
  369. size_t size_hint) {
  370. MessageHeader* msg = closure;
  371. const oneof_handlerdata_t *oneofdata = hd;
  372. VALUE str = rb_str_new2("");
  373. rb_enc_associate(str, kRubyStringUtf8Encoding);
  374. DEREF(msg, oneofdata->case_ofs, uint32_t) =
  375. oneofdata->oneof_case_num;
  376. DEREF(msg, oneofdata->ofs, VALUE) = str;
  377. return (void*)str;
  378. }
  379. static void *oneofbytes_handler(void *closure,
  380. const void *hd,
  381. size_t size_hint) {
  382. MessageHeader* msg = closure;
  383. const oneof_handlerdata_t *oneofdata = hd;
  384. VALUE str = rb_str_new2("");
  385. rb_enc_associate(str, kRubyString8bitEncoding);
  386. DEREF(msg, oneofdata->case_ofs, uint32_t) =
  387. oneofdata->oneof_case_num;
  388. DEREF(msg, oneofdata->ofs, VALUE) = str;
  389. return (void*)str;
  390. }
  391. static bool oneofstring_end_handler(void* closure, const void* hd) {
  392. VALUE rb_str = rb_str_new2("");
  393. rb_obj_freeze(rb_str);
  394. return true;
  395. }
  396. // Handler for a submessage field in a oneof.
  397. static void *oneofsubmsg_handler(void *closure,
  398. const void *hd) {
  399. MessageHeader* msg = closure;
  400. const oneof_handlerdata_t *oneofdata = hd;
  401. uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t);
  402. VALUE submsg_rb;
  403. MessageHeader* submsg;
  404. if (oldcase != oneofdata->oneof_case_num ||
  405. DEREF(msg, oneofdata->ofs, VALUE) == Qnil) {
  406. DEREF(msg, oneofdata->ofs, VALUE) =
  407. rb_class_new_instance(0, NULL, oneofdata->subklass);
  408. }
  409. // Set the oneof case *after* allocating the new class instance -- otherwise,
  410. // if the Ruby GC is invoked as part of a call into the VM, it might invoke
  411. // our mark routines, and our mark routines might see the case value
  412. // indicating a VALUE is present and expect a valid VALUE. See comment in
  413. // layout_set() for more detail: basically, the change to the value and the
  414. // case must be atomic w.r.t. the Ruby VM.
  415. DEREF(msg, oneofdata->case_ofs, uint32_t) =
  416. oneofdata->oneof_case_num;
  417. submsg_rb = DEREF(msg, oneofdata->ofs, VALUE);
  418. TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
  419. return submsg;
  420. }
  421. // Set up handlers for a repeated field.
  422. static void add_handlers_for_repeated_field(upb_handlers *h,
  423. const Descriptor* desc,
  424. const upb_fielddef *f,
  425. size_t offset) {
  426. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  427. attr.handler_data = newhandlerdata(h, offset, -1);
  428. upb_handlers_setstartseq(h, f, startseq_handler, &attr);
  429. switch (upb_fielddef_type(f)) {
  430. #define SET_HANDLER(utype, ltype) \
  431. case utype: \
  432. upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \
  433. break;
  434. SET_HANDLER(UPB_TYPE_BOOL, bool);
  435. SET_HANDLER(UPB_TYPE_INT32, int32);
  436. SET_HANDLER(UPB_TYPE_UINT32, uint32);
  437. SET_HANDLER(UPB_TYPE_ENUM, int32);
  438. SET_HANDLER(UPB_TYPE_FLOAT, float);
  439. SET_HANDLER(UPB_TYPE_INT64, int64);
  440. SET_HANDLER(UPB_TYPE_UINT64, uint64);
  441. SET_HANDLER(UPB_TYPE_DOUBLE, double);
  442. #undef SET_HANDLER
  443. case UPB_TYPE_STRING:
  444. case UPB_TYPE_BYTES: {
  445. bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
  446. upb_handlers_setstartstr(h, f, is_bytes ?
  447. appendbytes_handler : appendstr_handler,
  448. NULL);
  449. upb_handlers_setstring(h, f, stringdata_handler, NULL);
  450. upb_handlers_setendstr(h, f, appendstring_end_handler, NULL);
  451. break;
  452. }
  453. case UPB_TYPE_MESSAGE: {
  454. VALUE subklass = field_type_class(desc->layout, f);
  455. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  456. attr.handler_data = newsubmsghandlerdata(h, 0, -1, subklass);
  457. upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr);
  458. break;
  459. }
  460. }
  461. }
  462. // Set up handlers for a singular field.
  463. static void add_handlers_for_singular_field(const Descriptor* desc,
  464. upb_handlers* h,
  465. const upb_fielddef* f,
  466. size_t offset, size_t hasbit_off) {
  467. // The offset we pass to UPB points to the start of the Message,
  468. // rather than the start of where our data is stored.
  469. int32_t hasbit = -1;
  470. if (hasbit_off != MESSAGE_FIELD_NO_HASBIT) {
  471. hasbit = hasbit_off + sizeof(MessageHeader) * 8;
  472. }
  473. switch (upb_fielddef_type(f)) {
  474. case UPB_TYPE_BOOL:
  475. case UPB_TYPE_INT32:
  476. case UPB_TYPE_UINT32:
  477. case UPB_TYPE_ENUM:
  478. case UPB_TYPE_FLOAT:
  479. case UPB_TYPE_INT64:
  480. case UPB_TYPE_UINT64:
  481. case UPB_TYPE_DOUBLE:
  482. upb_msg_setscalarhandler(h, f, offset, hasbit);
  483. break;
  484. case UPB_TYPE_STRING:
  485. case UPB_TYPE_BYTES: {
  486. bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
  487. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  488. attr.handler_data = newhandlerdata(h, offset, hasbit);
  489. upb_handlers_setstartstr(h, f,
  490. is_bytes ? bytes_handler : str_handler,
  491. &attr);
  492. upb_handlers_setstring(h, f, stringdata_handler, &attr);
  493. upb_handlers_setendstr(h, f, stringdata_end_handler, &attr);
  494. break;
  495. }
  496. case UPB_TYPE_MESSAGE: {
  497. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  498. attr.handler_data = newsubmsghandlerdata(
  499. h, offset, hasbit, field_type_class(desc->layout, f));
  500. upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr);
  501. break;
  502. }
  503. }
  504. }
  505. // Adds handlers to a map field.
  506. static void add_handlers_for_mapfield(upb_handlers* h,
  507. const upb_fielddef* fielddef,
  508. size_t offset,
  509. const Descriptor* desc) {
  510. const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef);
  511. map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc);
  512. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  513. upb_handlers_addcleanup(h, hd, xfree);
  514. attr.handler_data = hd;
  515. upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr);
  516. }
  517. // Adds handlers to a map-entry msgdef.
  518. static void add_handlers_for_mapentry(const upb_msgdef* msgdef, upb_handlers* h,
  519. const Descriptor* desc) {
  520. const upb_fielddef* key_field = map_entry_key(msgdef);
  521. const upb_fielddef* value_field = map_entry_value(msgdef);
  522. map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc);
  523. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  524. upb_handlers_addcleanup(h, hd, xfree);
  525. attr.handler_data = hd;
  526. upb_handlers_setendmsg(h, endmap_handler, &attr);
  527. add_handlers_for_singular_field(
  528. desc, h, key_field,
  529. offsetof(map_parse_frame_t, key_storage),
  530. MESSAGE_FIELD_NO_HASBIT);
  531. add_handlers_for_singular_field(
  532. desc, h, value_field,
  533. offsetof(map_parse_frame_t, value_storage),
  534. MESSAGE_FIELD_NO_HASBIT);
  535. }
  536. // Set up handlers for a oneof field.
  537. static void add_handlers_for_oneof_field(upb_handlers *h,
  538. const upb_fielddef *f,
  539. size_t offset,
  540. size_t oneof_case_offset,
  541. const Descriptor* desc) {
  542. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  543. attr.handler_data =
  544. newoneofhandlerdata(h, offset, oneof_case_offset, f, desc);
  545. switch (upb_fielddef_type(f)) {
  546. #define SET_HANDLER(utype, ltype) \
  547. case utype: \
  548. upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \
  549. break;
  550. SET_HANDLER(UPB_TYPE_BOOL, bool);
  551. SET_HANDLER(UPB_TYPE_INT32, int32);
  552. SET_HANDLER(UPB_TYPE_UINT32, uint32);
  553. SET_HANDLER(UPB_TYPE_ENUM, int32);
  554. SET_HANDLER(UPB_TYPE_FLOAT, float);
  555. SET_HANDLER(UPB_TYPE_INT64, int64);
  556. SET_HANDLER(UPB_TYPE_UINT64, uint64);
  557. SET_HANDLER(UPB_TYPE_DOUBLE, double);
  558. #undef SET_HANDLER
  559. case UPB_TYPE_STRING:
  560. case UPB_TYPE_BYTES: {
  561. bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
  562. upb_handlers_setstartstr(h, f, is_bytes ?
  563. oneofbytes_handler : oneofstr_handler,
  564. &attr);
  565. upb_handlers_setstring(h, f, stringdata_handler, NULL);
  566. upb_handlers_setendstr(h, f, oneofstring_end_handler, &attr);
  567. break;
  568. }
  569. case UPB_TYPE_MESSAGE: {
  570. upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr);
  571. break;
  572. }
  573. }
  574. }
  575. static bool unknown_field_handler(void* closure, const void* hd,
  576. const char* buf, size_t size) {
  577. MessageHeader* msg = (MessageHeader*)closure;
  578. UPB_UNUSED(hd);
  579. if (msg->unknown_fields == NULL) {
  580. msg->unknown_fields = malloc(sizeof(stringsink));
  581. stringsink_init(msg->unknown_fields);
  582. }
  583. stringsink_string(msg->unknown_fields, NULL, buf, size, NULL);
  584. return true;
  585. }
  586. void add_handlers_for_message(const void *closure, upb_handlers *h) {
  587. const VALUE descriptor_pool = (VALUE)closure;
  588. const upb_msgdef* msgdef = upb_handlers_msgdef(h);
  589. Descriptor* desc =
  590. ruby_to_Descriptor(get_msgdef_obj(descriptor_pool, msgdef));
  591. upb_msg_field_iter i;
  592. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  593. // Ensure layout exists. We may be invoked to create handlers for a given
  594. // message if we are included as a submsg of another message type before our
  595. // class is actually built, so to work around this, we just create the layout
  596. // (and handlers, in the class-building function) on-demand.
  597. if (desc->layout == NULL) {
  598. desc->layout = create_layout(desc);
  599. }
  600. // If this is a mapentry message type, set up a special set of handlers and
  601. // bail out of the normal (user-defined) message type handling.
  602. if (upb_msgdef_mapentry(msgdef)) {
  603. add_handlers_for_mapentry(msgdef, h, desc);
  604. return;
  605. }
  606. upb_handlers_setunknown(h, unknown_field_handler, &attr);
  607. for (upb_msg_field_begin(&i, desc->msgdef);
  608. !upb_msg_field_done(&i);
  609. upb_msg_field_next(&i)) {
  610. const upb_fielddef *f = upb_msg_iter_field(&i);
  611. const upb_oneofdef *oneof = upb_fielddef_containingoneof(f);
  612. size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset +
  613. sizeof(MessageHeader);
  614. if (oneof) {
  615. size_t oneof_case_offset =
  616. desc->layout->oneofs[upb_oneofdef_index(oneof)].case_offset +
  617. sizeof(MessageHeader);
  618. add_handlers_for_oneof_field(h, f, offset, oneof_case_offset, desc);
  619. } else if (is_map_field(f)) {
  620. add_handlers_for_mapfield(h, f, offset, desc);
  621. } else if (upb_fielddef_isseq(f)) {
  622. add_handlers_for_repeated_field(h, desc, f, offset);
  623. } else {
  624. add_handlers_for_singular_field(
  625. desc, h, f, offset,
  626. desc->layout->fields[upb_fielddef_index(f)].hasbit);
  627. }
  628. }
  629. }
  630. // Constructs the handlers for filling a message's data into an in-memory
  631. // object.
  632. const upb_handlers* get_fill_handlers(Descriptor* desc) {
  633. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  634. return upb_handlercache_get(pool->fill_handler_cache, desc->msgdef);
  635. }
  636. static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) {
  637. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  638. return upb_pbcodecache_get(pool->fill_method_cache, desc->msgdef);
  639. }
  640. static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) {
  641. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  642. return upb_json_codecache_get(pool->json_fill_method_cache, desc->msgdef);
  643. }
  644. static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) {
  645. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  646. return upb_handlercache_get(pool->pb_serialize_handler_cache, desc->msgdef);
  647. }
  648. static const upb_handlers* msgdef_json_serialize_handlers(
  649. Descriptor* desc, bool preserve_proto_fieldnames) {
  650. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  651. if (preserve_proto_fieldnames) {
  652. return upb_handlercache_get(pool->json_serialize_handler_preserve_cache,
  653. desc->msgdef);
  654. } else {
  655. return upb_handlercache_get(pool->json_serialize_handler_cache,
  656. desc->msgdef);
  657. }
  658. }
  659. // Stack-allocated context during an encode/decode operation. Contains the upb
  660. // environment and its stack-based allocator, an initial buffer for allocations
  661. // to avoid malloc() when possible, and a template for Ruby exception messages
  662. // if any error occurs.
  663. #define STACK_ENV_STACKBYTES 4096
  664. typedef struct {
  665. upb_arena *arena;
  666. upb_status status;
  667. const char* ruby_error_template;
  668. char allocbuf[STACK_ENV_STACKBYTES];
  669. } stackenv;
  670. static void stackenv_init(stackenv* se, const char* errmsg);
  671. static void stackenv_uninit(stackenv* se);
  672. static void stackenv_init(stackenv* se, const char* errmsg) {
  673. se->ruby_error_template = errmsg;
  674. se->arena =
  675. upb_arena_init(se->allocbuf, sizeof(se->allocbuf), &upb_alloc_global);
  676. upb_status_clear(&se->status);
  677. }
  678. static void stackenv_uninit(stackenv* se) {
  679. upb_arena_free(se->arena);
  680. if (!upb_ok(&se->status)) {
  681. // TODO(haberman): have a way to verify that this is actually a parse error,
  682. // instead of just throwing "parse error" unconditionally.
  683. VALUE errmsg = rb_str_new2(upb_status_errmsg(&se->status));
  684. rb_raise(cParseError, se->ruby_error_template, errmsg);
  685. }
  686. }
  687. /*
  688. * call-seq:
  689. * MessageClass.decode(data) => message
  690. *
  691. * Decodes the given data (as a string containing bytes in protocol buffers wire
  692. * format) under the interpretration given by this message class's definition
  693. * and returns a message object with the corresponding field values.
  694. */
  695. VALUE Message_decode(VALUE klass, VALUE data) {
  696. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  697. Descriptor* desc = ruby_to_Descriptor(descriptor);
  698. VALUE msgklass = Descriptor_msgclass(descriptor);
  699. VALUE msg_rb;
  700. MessageHeader* msg;
  701. if (TYPE(data) != T_STRING) {
  702. rb_raise(rb_eArgError, "Expected string for binary protobuf data.");
  703. }
  704. msg_rb = rb_class_new_instance(0, NULL, msgklass);
  705. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  706. {
  707. const upb_pbdecodermethod* method = msgdef_decodermethod(desc);
  708. const upb_handlers* h = upb_pbdecodermethod_desthandlers(method);
  709. stackenv se;
  710. upb_sink sink;
  711. upb_pbdecoder* decoder;
  712. stackenv_init(&se, "Error occurred during parsing: %" PRIsVALUE);
  713. upb_sink_reset(&sink, h, msg);
  714. decoder = upb_pbdecoder_create(se.arena, method, sink, &se.status);
  715. upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
  716. upb_pbdecoder_input(decoder));
  717. stackenv_uninit(&se);
  718. }
  719. return msg_rb;
  720. }
  721. /*
  722. * call-seq:
  723. * MessageClass.decode_json(data, options = {}) => message
  724. *
  725. * Decodes the given data (as a string containing bytes in protocol buffers wire
  726. * format) under the interpretration given by this message class's definition
  727. * and returns a message object with the corresponding field values.
  728. *
  729. * @param options [Hash] options for the decoder
  730. * ignore_unknown_fields: set true to ignore unknown fields (default is to
  731. * raise an error)
  732. */
  733. VALUE Message_decode_json(int argc, VALUE* argv, VALUE klass) {
  734. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  735. Descriptor* desc = ruby_to_Descriptor(descriptor);
  736. VALUE msgklass = Descriptor_msgclass(descriptor);
  737. VALUE msg_rb;
  738. VALUE data = argv[0];
  739. VALUE ignore_unknown_fields = Qfalse;
  740. MessageHeader* msg;
  741. if (argc < 1 || argc > 2) {
  742. rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
  743. }
  744. if (argc == 2) {
  745. VALUE hash_args = argv[1];
  746. if (TYPE(hash_args) != T_HASH) {
  747. rb_raise(rb_eArgError, "Expected hash arguments.");
  748. }
  749. ignore_unknown_fields = rb_hash_lookup2(
  750. hash_args, ID2SYM(rb_intern("ignore_unknown_fields")), Qfalse);
  751. }
  752. if (TYPE(data) != T_STRING) {
  753. rb_raise(rb_eArgError, "Expected string for JSON data.");
  754. }
  755. // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to
  756. // convert, because string handlers pass data directly to message string
  757. // fields.
  758. msg_rb = rb_class_new_instance(0, NULL, msgklass);
  759. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  760. {
  761. const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc);
  762. stackenv se;
  763. upb_sink sink;
  764. upb_json_parser* parser;
  765. DescriptorPool* pool = ruby_to_DescriptorPool(generated_pool);
  766. stackenv_init(&se, "Error occurred during parsing: %" PRIsVALUE);
  767. upb_sink_reset(&sink, get_fill_handlers(desc), msg);
  768. parser = upb_json_parser_create(se.arena, method, pool->symtab, sink,
  769. &se.status, RTEST(ignore_unknown_fields));
  770. upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
  771. upb_json_parser_input(parser));
  772. stackenv_uninit(&se);
  773. }
  774. return msg_rb;
  775. }
  776. // -----------------------------------------------------------------------------
  777. // Serializing.
  778. // -----------------------------------------------------------------------------
  779. /* msgvisitor *****************************************************************/
  780. static void putmsg(VALUE msg, const Descriptor* desc, upb_sink sink, int depth,
  781. bool emit_defaults, bool is_json, bool open_msg);
  782. static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
  783. upb_selector_t ret;
  784. bool ok = upb_handlers_getselector(f, type, &ret);
  785. UPB_ASSERT(ok);
  786. return ret;
  787. }
  788. static void putstr(VALUE str, const upb_fielddef *f, upb_sink sink) {
  789. upb_sink subsink;
  790. if (str == Qnil) return;
  791. assert(BUILTIN_TYPE(str) == RUBY_T_STRING);
  792. // We should be guaranteed that the string has the correct encoding because
  793. // we ensured this at assignment time and then froze the string.
  794. if (upb_fielddef_type(f) == UPB_TYPE_STRING) {
  795. assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyStringUtf8Encoding);
  796. } else {
  797. assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyString8bitEncoding);
  798. }
  799. upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str),
  800. &subsink);
  801. upb_sink_putstring(subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str),
  802. RSTRING_LEN(str), NULL);
  803. upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));
  804. }
  805. static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink sink,
  806. int depth, bool emit_defaults, bool is_json) {
  807. upb_sink subsink;
  808. VALUE descriptor;
  809. Descriptor* subdesc;
  810. if (submsg == Qnil) return;
  811. descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  812. subdesc = ruby_to_Descriptor(descriptor);
  813. upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink);
  814. putmsg(submsg, subdesc, subsink, depth + 1, emit_defaults, is_json, true);
  815. upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG));
  816. }
  817. static void putary(VALUE ary, const upb_fielddef* f, upb_sink sink, int depth,
  818. bool emit_defaults, bool is_json) {
  819. upb_sink subsink;
  820. upb_fieldtype_t type = upb_fielddef_type(f);
  821. upb_selector_t sel = 0;
  822. int size;
  823. int i;
  824. if (ary == Qnil) return;
  825. if (!emit_defaults && NUM2INT(RepeatedField_length(ary)) == 0) return;
  826. size = NUM2INT(RepeatedField_length(ary));
  827. if (size == 0 && !emit_defaults) return;
  828. upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
  829. if (upb_fielddef_isprimitive(f)) {
  830. sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  831. }
  832. for (i = 0; i < size; i++) {
  833. void* memory = RepeatedField_index_native(ary, i);
  834. switch (type) {
  835. #define T(upbtypeconst, upbtype, ctype) \
  836. case upbtypeconst: \
  837. upb_sink_put##upbtype(subsink, sel, *((ctype*)memory)); \
  838. break;
  839. T(UPB_TYPE_FLOAT, float, float)
  840. T(UPB_TYPE_DOUBLE, double, double)
  841. T(UPB_TYPE_BOOL, bool, int8_t)
  842. case UPB_TYPE_ENUM:
  843. T(UPB_TYPE_INT32, int32, int32_t)
  844. T(UPB_TYPE_UINT32, uint32, uint32_t)
  845. T(UPB_TYPE_INT64, int64, int64_t)
  846. T(UPB_TYPE_UINT64, uint64, uint64_t)
  847. case UPB_TYPE_STRING:
  848. case UPB_TYPE_BYTES:
  849. putstr(*((VALUE *)memory), f, subsink);
  850. break;
  851. case UPB_TYPE_MESSAGE:
  852. putsubmsg(*((VALUE*)memory), f, subsink, depth, emit_defaults, is_json);
  853. break;
  854. #undef T
  855. }
  856. }
  857. upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
  858. }
  859. static void put_ruby_value(VALUE value, const upb_fielddef* f, VALUE type_class,
  860. int depth, upb_sink sink, bool emit_defaults,
  861. bool is_json) {
  862. upb_selector_t sel = 0;
  863. if (depth > ENCODE_MAX_NESTING) {
  864. rb_raise(rb_eRuntimeError,
  865. "Maximum recursion depth exceeded during encoding.");
  866. }
  867. if (upb_fielddef_isprimitive(f)) {
  868. sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  869. }
  870. switch (upb_fielddef_type(f)) {
  871. case UPB_TYPE_INT32:
  872. upb_sink_putint32(sink, sel, NUM2INT(value));
  873. break;
  874. case UPB_TYPE_INT64:
  875. upb_sink_putint64(sink, sel, NUM2LL(value));
  876. break;
  877. case UPB_TYPE_UINT32:
  878. upb_sink_putuint32(sink, sel, NUM2UINT(value));
  879. break;
  880. case UPB_TYPE_UINT64:
  881. upb_sink_putuint64(sink, sel, NUM2ULL(value));
  882. break;
  883. case UPB_TYPE_FLOAT:
  884. upb_sink_putfloat(sink, sel, NUM2DBL(value));
  885. break;
  886. case UPB_TYPE_DOUBLE:
  887. upb_sink_putdouble(sink, sel, NUM2DBL(value));
  888. break;
  889. case UPB_TYPE_ENUM: {
  890. if (TYPE(value) == T_SYMBOL) {
  891. value = rb_funcall(type_class, rb_intern("resolve"), 1, value);
  892. }
  893. upb_sink_putint32(sink, sel, NUM2INT(value));
  894. break;
  895. }
  896. case UPB_TYPE_BOOL:
  897. upb_sink_putbool(sink, sel, value == Qtrue);
  898. break;
  899. case UPB_TYPE_STRING:
  900. case UPB_TYPE_BYTES:
  901. putstr(value, f, sink);
  902. break;
  903. case UPB_TYPE_MESSAGE:
  904. putsubmsg(value, f, sink, depth, emit_defaults, is_json);
  905. }
  906. }
  907. static void putmap(VALUE map, const upb_fielddef* f, upb_sink sink, int depth,
  908. bool emit_defaults, bool is_json) {
  909. Map* self;
  910. upb_sink subsink;
  911. const upb_fielddef* key_field;
  912. const upb_fielddef* value_field;
  913. Map_iter it;
  914. if (map == Qnil) return;
  915. if (!emit_defaults && Map_length(map) == 0) return;
  916. self = ruby_to_Map(map);
  917. upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
  918. assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE);
  919. key_field = map_field_key(f);
  920. value_field = map_field_value(f);
  921. for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) {
  922. VALUE key = Map_iter_key(&it);
  923. VALUE value = Map_iter_value(&it);
  924. upb_status status;
  925. upb_sink entry_sink;
  926. upb_sink_startsubmsg(subsink, getsel(f, UPB_HANDLER_STARTSUBMSG),
  927. &entry_sink);
  928. upb_sink_startmsg(entry_sink);
  929. put_ruby_value(key, key_field, Qnil, depth + 1, entry_sink, emit_defaults,
  930. is_json);
  931. put_ruby_value(value, value_field, self->value_type_class, depth + 1,
  932. entry_sink, emit_defaults, is_json);
  933. upb_sink_endmsg(entry_sink, &status);
  934. upb_sink_endsubmsg(subsink, getsel(f, UPB_HANDLER_ENDSUBMSG));
  935. }
  936. upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
  937. }
  938. static const upb_handlers* msgdef_json_serialize_handlers(
  939. Descriptor* desc, bool preserve_proto_fieldnames);
  940. static void putjsonany(VALUE msg_rb, const Descriptor* desc, upb_sink sink,
  941. int depth, bool emit_defaults) {
  942. upb_status status;
  943. MessageHeader* msg = NULL;
  944. const upb_fielddef* type_field = upb_msgdef_itof(desc->msgdef, UPB_ANY_TYPE);
  945. const upb_fielddef* value_field = upb_msgdef_itof(desc->msgdef, UPB_ANY_VALUE);
  946. size_t type_url_offset;
  947. VALUE type_url_str_rb;
  948. const upb_msgdef *payload_type = NULL;
  949. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  950. upb_sink_startmsg(sink);
  951. /* Handle type url */
  952. type_url_offset = desc->layout->fields[upb_fielddef_index(type_field)].offset;
  953. type_url_str_rb = DEREF(Message_data(msg), type_url_offset, VALUE);
  954. if (RSTRING_LEN(type_url_str_rb) > 0) {
  955. putstr(type_url_str_rb, type_field, sink);
  956. }
  957. {
  958. const char* type_url_str = RSTRING_PTR(type_url_str_rb);
  959. size_t type_url_len = RSTRING_LEN(type_url_str_rb);
  960. DescriptorPool* pool = ruby_to_DescriptorPool(generated_pool);
  961. if (type_url_len <= 20 ||
  962. strncmp(type_url_str, "type.googleapis.com/", 20) != 0) {
  963. rb_raise(rb_eRuntimeError, "Invalid type url: %s", type_url_str);
  964. return;
  965. }
  966. /* Resolve type url */
  967. type_url_str += 20;
  968. type_url_len -= 20;
  969. payload_type = upb_symtab_lookupmsg2(
  970. pool->symtab, type_url_str, type_url_len);
  971. if (payload_type == NULL) {
  972. rb_raise(rb_eRuntimeError, "Unknown type: %s", type_url_str);
  973. return;
  974. }
  975. }
  976. {
  977. uint32_t value_offset;
  978. VALUE value_str_rb;
  979. size_t value_len;
  980. value_offset = desc->layout->fields[upb_fielddef_index(value_field)].offset;
  981. value_str_rb = DEREF(Message_data(msg), value_offset, VALUE);
  982. value_len = RSTRING_LEN(value_str_rb);
  983. if (value_len > 0) {
  984. VALUE payload_desc_rb = get_msgdef_obj(generated_pool, payload_type);
  985. Descriptor* payload_desc = ruby_to_Descriptor(payload_desc_rb);
  986. VALUE payload_class = Descriptor_msgclass(payload_desc_rb);
  987. upb_sink subsink;
  988. bool is_wellknown;
  989. VALUE payload_msg_rb = Message_decode(payload_class, value_str_rb);
  990. is_wellknown =
  991. upb_msgdef_wellknowntype(payload_desc->msgdef) !=
  992. UPB_WELLKNOWN_UNSPECIFIED;
  993. if (is_wellknown) {
  994. upb_sink_startstr(sink, getsel(value_field, UPB_HANDLER_STARTSTR), 0,
  995. &subsink);
  996. }
  997. subsink.handlers =
  998. msgdef_json_serialize_handlers(payload_desc, true);
  999. subsink.closure = sink.closure;
  1000. putmsg(payload_msg_rb, payload_desc, subsink, depth, emit_defaults, true,
  1001. is_wellknown);
  1002. }
  1003. }
  1004. upb_sink_endmsg(sink, &status);
  1005. }
  1006. static void putjsonlistvalue(
  1007. VALUE msg_rb, const Descriptor* desc,
  1008. upb_sink sink, int depth, bool emit_defaults) {
  1009. upb_status status;
  1010. upb_sink subsink;
  1011. MessageHeader* msg = NULL;
  1012. const upb_fielddef* f = upb_msgdef_itof(desc->msgdef, 1);
  1013. uint32_t offset =
  1014. desc->layout->fields[upb_fielddef_index(f)].offset +
  1015. sizeof(MessageHeader);
  1016. VALUE ary;
  1017. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  1018. upb_sink_startmsg(sink);
  1019. ary = DEREF(msg, offset, VALUE);
  1020. if (ary == Qnil || RepeatedField_size(ary) == 0) {
  1021. upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
  1022. upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
  1023. } else {
  1024. putary(ary, f, sink, depth, emit_defaults, true);
  1025. }
  1026. upb_sink_endmsg(sink, &status);
  1027. }
  1028. static void putmsg(VALUE msg_rb, const Descriptor* desc,
  1029. upb_sink sink, int depth, bool emit_defaults,
  1030. bool is_json, bool open_msg) {
  1031. MessageHeader* msg;
  1032. upb_msg_field_iter i;
  1033. upb_status status;
  1034. if (is_json &&
  1035. upb_msgdef_wellknowntype(desc->msgdef) == UPB_WELLKNOWN_ANY) {
  1036. putjsonany(msg_rb, desc, sink, depth, emit_defaults);
  1037. return;
  1038. }
  1039. if (is_json &&
  1040. upb_msgdef_wellknowntype(desc->msgdef) == UPB_WELLKNOWN_LISTVALUE) {
  1041. putjsonlistvalue(msg_rb, desc, sink, depth, emit_defaults);
  1042. return;
  1043. }
  1044. if (open_msg) {
  1045. upb_sink_startmsg(sink);
  1046. }
  1047. // Protect against cycles (possible because users may freely reassign message
  1048. // and repeated fields) by imposing a maximum recursion depth.
  1049. if (depth > ENCODE_MAX_NESTING) {
  1050. rb_raise(rb_eRuntimeError,
  1051. "Maximum recursion depth exceeded during encoding.");
  1052. }
  1053. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  1054. if (desc != msg->descriptor) {
  1055. rb_raise(rb_eArgError,
  1056. "The type of given msg is '%s', expect '%s'.",
  1057. upb_msgdef_fullname(msg->descriptor->msgdef),
  1058. upb_msgdef_fullname(desc->msgdef));
  1059. }
  1060. for (upb_msg_field_begin(&i, desc->msgdef);
  1061. !upb_msg_field_done(&i);
  1062. upb_msg_field_next(&i)) {
  1063. upb_fielddef *f = upb_msg_iter_field(&i);
  1064. const upb_oneofdef *oneof = upb_fielddef_containingoneof(f);
  1065. bool is_matching_oneof = false;
  1066. uint32_t offset =
  1067. desc->layout->fields[upb_fielddef_index(f)].offset +
  1068. sizeof(MessageHeader);
  1069. if (oneof) {
  1070. uint32_t oneof_case =
  1071. slot_read_oneof_case(desc->layout, Message_data(msg), oneof);
  1072. // For a oneof, check that this field is actually present -- skip all the
  1073. // below if not.
  1074. if (oneof_case != upb_fielddef_number(f)) {
  1075. continue;
  1076. }
  1077. // Otherwise, fall through to the appropriate singular-field handler
  1078. // below.
  1079. is_matching_oneof = true;
  1080. }
  1081. if (is_map_field(f)) {
  1082. VALUE map = DEREF(msg, offset, VALUE);
  1083. if (map != Qnil || emit_defaults) {
  1084. putmap(map, f, sink, depth, emit_defaults, is_json);
  1085. }
  1086. } else if (upb_fielddef_isseq(f)) {
  1087. VALUE ary = DEREF(msg, offset, VALUE);
  1088. if (ary != Qnil) {
  1089. putary(ary, f, sink, depth, emit_defaults, is_json);
  1090. }
  1091. } else if (upb_fielddef_isstring(f)) {
  1092. VALUE str = DEREF(msg, offset, VALUE);
  1093. bool is_default = false;
  1094. if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO2) {
  1095. is_default = layout_has(desc->layout, Message_data(msg), f) == Qfalse;
  1096. } else if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO3) {
  1097. is_default = RSTRING_LEN(str) == 0;
  1098. }
  1099. if (is_matching_oneof || emit_defaults || !is_default) {
  1100. putstr(str, f, sink);
  1101. }
  1102. } else if (upb_fielddef_issubmsg(f)) {
  1103. putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth,
  1104. emit_defaults, is_json);
  1105. } else {
  1106. upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  1107. #define T(upbtypeconst, upbtype, ctype, default_value) \
  1108. case upbtypeconst: { \
  1109. ctype value = DEREF(msg, offset, ctype); \
  1110. bool is_default = false; \
  1111. if (upb_fielddef_haspresence(f)) { \
  1112. is_default = layout_has(desc->layout, Message_data(msg), f) == Qfalse; \
  1113. } else if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO3) { \
  1114. is_default = default_value == value; \
  1115. } \
  1116. if (is_matching_oneof || emit_defaults || !is_default) { \
  1117. upb_sink_put##upbtype(sink, sel, value); \
  1118. } \
  1119. } break;
  1120. switch (upb_fielddef_type(f)) {
  1121. T(UPB_TYPE_FLOAT, float, float, 0.0)
  1122. T(UPB_TYPE_DOUBLE, double, double, 0.0)
  1123. T(UPB_TYPE_BOOL, bool, uint8_t, 0)
  1124. case UPB_TYPE_ENUM:
  1125. T(UPB_TYPE_INT32, int32, int32_t, 0)
  1126. T(UPB_TYPE_UINT32, uint32, uint32_t, 0)
  1127. T(UPB_TYPE_INT64, int64, int64_t, 0)
  1128. T(UPB_TYPE_UINT64, uint64, uint64_t, 0)
  1129. case UPB_TYPE_STRING:
  1130. case UPB_TYPE_BYTES:
  1131. case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error.");
  1132. }
  1133. #undef T
  1134. }
  1135. }
  1136. {
  1137. stringsink* unknown = msg->unknown_fields;
  1138. if (unknown != NULL) {
  1139. upb_sink_putunknown(sink, unknown->ptr, unknown->len);
  1140. }
  1141. }
  1142. if (open_msg) {
  1143. upb_sink_endmsg(sink, &status);
  1144. }
  1145. }
  1146. /*
  1147. * call-seq:
  1148. * MessageClass.encode(msg) => bytes
  1149. *
  1150. * Encodes the given message object to its serialized form in protocol buffers
  1151. * wire format.
  1152. */
  1153. VALUE Message_encode(VALUE klass, VALUE msg_rb) {
  1154. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  1155. Descriptor* desc = ruby_to_Descriptor(descriptor);
  1156. stringsink sink;
  1157. stringsink_init(&sink);
  1158. {
  1159. const upb_handlers* serialize_handlers =
  1160. msgdef_pb_serialize_handlers(desc);
  1161. stackenv se;
  1162. upb_pb_encoder* encoder;
  1163. VALUE ret;
  1164. stackenv_init(&se, "Error occurred during encoding: %" PRIsVALUE);
  1165. encoder = upb_pb_encoder_create(se.arena, serialize_handlers, sink.sink);
  1166. putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0, false, false, true);
  1167. ret = rb_str_new(sink.ptr, sink.len);
  1168. stackenv_uninit(&se);
  1169. stringsink_uninit(&sink);
  1170. return ret;
  1171. }
  1172. }
  1173. /*
  1174. * call-seq:
  1175. * MessageClass.encode_json(msg, options = {}) => json_string
  1176. *
  1177. * Encodes the given message object into its serialized JSON representation.
  1178. * @param options [Hash] options for the decoder
  1179. * preserve_proto_fieldnames: set true to use original fieldnames (default is to camelCase)
  1180. * emit_defaults: set true to emit 0/false values (default is to omit them)
  1181. */
  1182. VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) {
  1183. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  1184. Descriptor* desc = ruby_to_Descriptor(descriptor);
  1185. VALUE msg_rb;
  1186. VALUE preserve_proto_fieldnames = Qfalse;
  1187. VALUE emit_defaults = Qfalse;
  1188. stringsink sink;
  1189. if (argc < 1 || argc > 2) {
  1190. rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
  1191. }
  1192. msg_rb = argv[0];
  1193. if (argc == 2) {
  1194. VALUE hash_args = argv[1];
  1195. if (TYPE(hash_args) != T_HASH) {
  1196. rb_raise(rb_eArgError, "Expected hash arguments.");
  1197. }
  1198. preserve_proto_fieldnames = rb_hash_lookup2(
  1199. hash_args, ID2SYM(rb_intern("preserve_proto_fieldnames")), Qfalse);
  1200. emit_defaults = rb_hash_lookup2(
  1201. hash_args, ID2SYM(rb_intern("emit_defaults")), Qfalse);
  1202. }
  1203. stringsink_init(&sink);
  1204. {
  1205. const upb_handlers* serialize_handlers =
  1206. msgdef_json_serialize_handlers(desc, RTEST(preserve_proto_fieldnames));
  1207. upb_json_printer* printer;
  1208. stackenv se;
  1209. VALUE ret;
  1210. stackenv_init(&se, "Error occurred during encoding: %" PRIsVALUE);
  1211. printer = upb_json_printer_create(se.arena, serialize_handlers, sink.sink);
  1212. putmsg(msg_rb, desc, upb_json_printer_input(printer), 0,
  1213. RTEST(emit_defaults), true, true);
  1214. ret = rb_enc_str_new(sink.ptr, sink.len, rb_utf8_encoding());
  1215. stackenv_uninit(&se);
  1216. stringsink_uninit(&sink);
  1217. return ret;
  1218. }
  1219. }
  1220. static void discard_unknown(VALUE msg_rb, const Descriptor* desc) {
  1221. MessageHeader* msg;
  1222. upb_msg_field_iter it;
  1223. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  1224. {
  1225. stringsink* unknown = msg->unknown_fields;
  1226. if (unknown != NULL) {
  1227. stringsink_uninit(unknown);
  1228. msg->unknown_fields = NULL;
  1229. }
  1230. }
  1231. for (upb_msg_field_begin(&it, desc->msgdef);
  1232. !upb_msg_field_done(&it);
  1233. upb_msg_field_next(&it)) {
  1234. upb_fielddef *f = upb_msg_iter_field(&it);
  1235. const upb_oneofdef *oneof = upb_fielddef_containingoneof(f);
  1236. uint32_t offset =
  1237. desc->layout->fields[upb_fielddef_index(f)].offset +
  1238. sizeof(MessageHeader);
  1239. if (oneof) {
  1240. uint32_t oneof_case =
  1241. slot_read_oneof_case(desc->layout, Message_data(msg), oneof);
  1242. // For a oneof, check that this field is actually present -- skip all the
  1243. // below if not.
  1244. if (oneof_case != upb_fielddef_number(f)) {
  1245. continue;
  1246. }
  1247. // Otherwise, fall through to the appropriate singular-field handler
  1248. // below.
  1249. }
  1250. if (!upb_fielddef_issubmsg(f)) {
  1251. continue;
  1252. }
  1253. if (is_map_field(f)) {
  1254. VALUE map;
  1255. Map_iter map_it;
  1256. if (!upb_fielddef_issubmsg(map_field_value(f))) continue;
  1257. map = DEREF(msg, offset, VALUE);
  1258. if (map == Qnil) continue;
  1259. for (Map_begin(map, &map_it); !Map_done(&map_it); Map_next(&map_it)) {
  1260. VALUE submsg = Map_iter_value(&map_it);
  1261. VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  1262. const Descriptor* subdesc = ruby_to_Descriptor(descriptor);
  1263. discard_unknown(submsg, subdesc);
  1264. }
  1265. } else if (upb_fielddef_isseq(f)) {
  1266. VALUE ary = DEREF(msg, offset, VALUE);
  1267. int size;
  1268. int i;
  1269. if (ary == Qnil) continue;
  1270. size = NUM2INT(RepeatedField_length(ary));
  1271. for (i = 0; i < size; i++) {
  1272. void* memory = RepeatedField_index_native(ary, i);
  1273. VALUE submsg = *((VALUE *)memory);
  1274. VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  1275. const Descriptor* subdesc = ruby_to_Descriptor(descriptor);
  1276. discard_unknown(submsg, subdesc);
  1277. }
  1278. } else {
  1279. VALUE submsg = DEREF(msg, offset, VALUE);
  1280. VALUE descriptor;
  1281. const Descriptor* subdesc;
  1282. if (submsg == Qnil) continue;
  1283. descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  1284. subdesc = ruby_to_Descriptor(descriptor);
  1285. discard_unknown(submsg, subdesc);
  1286. }
  1287. }
  1288. }
  1289. /*
  1290. * call-seq:
  1291. * Google::Protobuf.discard_unknown(msg)
  1292. *
  1293. * Discard unknown fields in the given message object and recursively discard
  1294. * unknown fields in submessages.
  1295. */
  1296. VALUE Google_Protobuf_discard_unknown(VALUE self, VALUE msg_rb) {
  1297. VALUE klass = CLASS_OF(msg_rb);
  1298. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  1299. Descriptor* desc = ruby_to_Descriptor(descriptor);
  1300. if (klass == cRepeatedField || klass == cMap) {
  1301. rb_raise(rb_eArgError, "Expected proto msg for discard unknown.");
  1302. } else {
  1303. discard_unknown(msg_rb, desc);
  1304. }
  1305. return Qnil;
  1306. }