| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067 | // Protocol Buffers - Google's data interchange format// Copyright 2008 Google Inc.  All rights reserved.// https://developers.google.com/protocol-buffers///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:////     * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//     * Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.//     * Neither the name of Google Inc. nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE./** * @fileoverview This file contains helper code used by jspb.BinaryReader * and BinaryWriter. * * @suppress {missingRequire} TODO(b/152540451): this shouldn't be needed * @author aappleby@google.com (Austin Appleby) */goog.provide('jspb.utils');goog.require('goog.asserts');goog.require('goog.crypt');goog.require('goog.crypt.base64');goog.require('goog.string');goog.require('jspb.BinaryConstants');/** * Javascript can't natively handle 64-bit data types, so to manipulate them we * have to split them into two 32-bit halves and do the math manually. * * Instead of instantiating and passing small structures around to do this, we * instead just use two global temporary values. This one stores the low 32 * bits of a split value - for example, if the original value was a 64-bit * integer, this temporary value will contain the low 32 bits of that integer. * If the original value was a double, this temporary value will contain the * low 32 bits of the binary representation of that double, etcetera. * @type {number} */jspb.utils.split64Low = 0;/** * And correspondingly, this temporary variable will contain the high 32 bits * of whatever value was split. * @type {number} */jspb.utils.split64High = 0;/** * Splits an unsigned Javascript integer into two 32-bit halves and stores it * in the temp values above. * @param {number} value The number to split. */jspb.utils.splitUint64 = function(value) {  // Extract low 32 bits and high 32 bits as unsigned integers.  var lowBits = value >>> 0;  var highBits = Math.floor((value - lowBits) /                            jspb.BinaryConstants.TWO_TO_32) >>> 0;  jspb.utils.split64Low = lowBits;  jspb.utils.split64High = highBits;};/** * Splits a signed Javascript integer into two 32-bit halves and stores it in * the temp values above. * @param {number} value The number to split. */jspb.utils.splitInt64 = function(value) {  // Convert to sign-magnitude representation.  var sign = (value < 0);  value = Math.abs(value);  // Extract low 32 bits and high 32 bits as unsigned integers.  var lowBits = value >>> 0;  var highBits = Math.floor((value - lowBits) /                            jspb.BinaryConstants.TWO_TO_32);  highBits = highBits >>> 0;  // Perform two's complement conversion if the sign bit was set.  if (sign) {    highBits = ~highBits >>> 0;    lowBits = ~lowBits >>> 0;    lowBits += 1;    if (lowBits > 0xFFFFFFFF) {      lowBits = 0;      highBits++;      if (highBits > 0xFFFFFFFF) highBits = 0;    }  }  jspb.utils.split64Low = lowBits;  jspb.utils.split64High = highBits;};/** * Converts a signed Javascript integer into zigzag format, splits it into two * 32-bit halves, and stores it in the temp values above. * @param {number} value The number to split. */jspb.utils.splitZigzag64 = function(value) {  // Convert to sign-magnitude and scale by 2 before we split the value.  var sign = (value < 0);  value = Math.abs(value) * 2;  jspb.utils.splitUint64(value);  var lowBits = jspb.utils.split64Low;  var highBits = jspb.utils.split64High;  // If the value is negative, subtract 1 from the split representation so we  // don't lose the sign bit due to precision issues.  if (sign) {    if (lowBits == 0) {      if (highBits == 0) {        lowBits = 0xFFFFFFFF;        highBits = 0xFFFFFFFF;      } else {        highBits--;        lowBits = 0xFFFFFFFF;      }    } else {      lowBits--;    }  }  jspb.utils.split64Low = lowBits;  jspb.utils.split64High = highBits;};/** * Converts a floating-point number into 32-bit IEEE representation and stores * it in the temp values above. * @param {number} value */jspb.utils.splitFloat32 = function(value) {  var sign = (value < 0) ? 1 : 0;  value = sign ? -value : value;  var exp;  var mant;  // Handle zeros.  if (value === 0) {    if ((1 / value) > 0) {      // Positive zero.      jspb.utils.split64High = 0;      jspb.utils.split64Low = 0x00000000;    } else {      // Negative zero.      jspb.utils.split64High = 0;      jspb.utils.split64Low = 0x80000000;    }    return;  }  // Handle nans.  if (isNaN(value)) {    jspb.utils.split64High = 0;    jspb.utils.split64Low = 0x7FFFFFFF;    return;  }  // Handle infinities.  if (value > jspb.BinaryConstants.FLOAT32_MAX) {    jspb.utils.split64High = 0;    jspb.utils.split64Low = ((sign << 31) | (0x7F800000)) >>> 0;    return;  }  // Handle denormals.  if (value < jspb.BinaryConstants.FLOAT32_MIN) {    // Number is a denormal.    mant = Math.round(value / Math.pow(2, -149));    jspb.utils.split64High = 0;    jspb.utils.split64Low = ((sign << 31) | mant) >>> 0;    return;  }  exp = Math.floor(Math.log(value) / Math.LN2);  mant = value * Math.pow(2, -exp);  mant = Math.round(mant * jspb.BinaryConstants.TWO_TO_23) & 0x7FFFFF;  jspb.utils.split64High = 0;  jspb.utils.split64Low = ((sign << 31) | ((exp + 127) << 23) | mant) >>> 0;};/** * Converts a floating-point number into 64-bit IEEE representation and stores * it in the temp values above. * @param {number} value */jspb.utils.splitFloat64 = function(value) {  var sign = (value < 0) ? 1 : 0;  value = sign ? -value : value;  // Handle zeros.  if (value === 0) {    if ((1 / value) > 0) {      // Positive zero.      jspb.utils.split64High = 0x00000000;      jspb.utils.split64Low = 0x00000000;    } else {      // Negative zero.      jspb.utils.split64High = 0x80000000;      jspb.utils.split64Low = 0x00000000;    }    return;  }  // Handle nans.  if (isNaN(value)) {    jspb.utils.split64High = 0x7FFFFFFF;    jspb.utils.split64Low = 0xFFFFFFFF;    return;  }  // Handle infinities.  if (value > jspb.BinaryConstants.FLOAT64_MAX) {    jspb.utils.split64High = ((sign << 31) | (0x7FF00000)) >>> 0;    jspb.utils.split64Low = 0;    return;  }  // Handle denormals.  if (value < jspb.BinaryConstants.FLOAT64_MIN) {    // Number is a denormal.    var mant = value / Math.pow(2, -1074);    var mantHigh = (mant / jspb.BinaryConstants.TWO_TO_32);    jspb.utils.split64High = ((sign << 31) | mantHigh) >>> 0;    jspb.utils.split64Low = (mant >>> 0);    return;  }  // Compute the least significant exponent needed to represent the magnitude of  // the value by repeadly dividing/multiplying by 2 until the magnitude  // crosses 2. While tempting to use log math to find the exponent, at the  // boundaries of precision, the result can be off by one.  var maxDoubleExponent = 1023;  var minDoubleExponent = -1022;  var x = value;  var exp = 0;  if (x >= 2) {    while (x >= 2 && exp < maxDoubleExponent) {      exp++;      x = x / 2;    }  } else {    while (x < 1 && exp > minDoubleExponent) {      x = x * 2;      exp--;    }  }  var mant = value * Math.pow(2, -exp);  var mantHigh = (mant * jspb.BinaryConstants.TWO_TO_20) & 0xFFFFF;  var mantLow = (mant * jspb.BinaryConstants.TWO_TO_52) >>> 0;  jspb.utils.split64High =      ((sign << 31) | ((exp + 1023) << 20) | mantHigh) >>> 0;  jspb.utils.split64Low = mantLow;};/** * Converts an 8-character hash string into two 32-bit numbers and stores them * in the temp values above. * @param {string} hash */jspb.utils.splitHash64 = function(hash) {  var a = hash.charCodeAt(0);  var b = hash.charCodeAt(1);  var c = hash.charCodeAt(2);  var d = hash.charCodeAt(3);  var e = hash.charCodeAt(4);  var f = hash.charCodeAt(5);  var g = hash.charCodeAt(6);  var h = hash.charCodeAt(7);  jspb.utils.split64Low = (a + (b << 8) + (c << 16) + (d << 24)) >>> 0;  jspb.utils.split64High = (e + (f << 8) + (g << 16) + (h << 24)) >>> 0;};/** * Joins two 32-bit values into a 64-bit unsigned integer. Precision will be * lost if the result is greater than 2^52. * @param {number} bitsLow * @param {number} bitsHigh * @return {number} */jspb.utils.joinUint64 = function(bitsLow, bitsHigh) {  return bitsHigh * jspb.BinaryConstants.TWO_TO_32 + (bitsLow >>> 0);};/** * Joins two 32-bit values into a 64-bit signed integer. Precision will be lost * if the result is greater than 2^52. * @param {number} bitsLow * @param {number} bitsHigh * @return {number} */jspb.utils.joinInt64 = function(bitsLow, bitsHigh) {  // If the high bit is set, do a manual two's complement conversion.  var sign = (bitsHigh & 0x80000000);  if (sign) {    bitsLow = (~bitsLow + 1) >>> 0;    bitsHigh = ~bitsHigh >>> 0;    if (bitsLow == 0) {      bitsHigh = (bitsHigh + 1) >>> 0;    }  }  var result = jspb.utils.joinUint64(bitsLow, bitsHigh);  return sign ? -result : result;};/** * Converts split 64-bit values from standard two's complement encoding to * zig-zag encoding. Invokes the provided function to produce final result. * * @param {number} bitsLow * @param {number} bitsHigh * @param {function(number, number): T} convert Conversion function to produce *     the result value, takes parameters (lowBits, highBits). * @return {T} * @template T */jspb.utils.toZigzag64 = function(bitsLow, bitsHigh, convert) {  // See  // https://engdoc.corp.google.com/eng/howto/protocolbuffers/developerguide/encoding.shtml?cl=head#types  // 64-bit math is: (n << 1) ^ (n >> 63)  //  // To do this in 32 bits, we can get a 32-bit sign-flipping mask from the  // high word.  // Then we can operate on each word individually, with the addition of the  // "carry" to get the most significant bit from the low word into the high  // word.  var signFlipMask = bitsHigh >> 31;  bitsHigh = (bitsHigh << 1 | bitsLow >>> 31) ^ signFlipMask;  bitsLow = (bitsLow << 1) ^ signFlipMask;  return convert(bitsLow, bitsHigh);};/** * Joins two 32-bit values into a 64-bit unsigned integer and applies zigzag * decoding. Precision will be lost if the result is greater than 2^52. * @param {number} bitsLow * @param {number} bitsHigh * @return {number} */jspb.utils.joinZigzag64 = function(bitsLow, bitsHigh) {  return jspb.utils.fromZigzag64(bitsLow, bitsHigh, jspb.utils.joinInt64);};/** * Converts split 64-bit values from zigzag encoding to standard two's * complement encoding. Invokes the provided function to produce final result. * * @param {number} bitsLow * @param {number} bitsHigh * @param {function(number, number): T} convert Conversion function to produce *     the result value, takes parameters (lowBits, highBits). * @return {T} * @template T */jspb.utils.fromZigzag64 = function(bitsLow, bitsHigh, convert) {  // 64 bit math is:  //   signmask = (zigzag & 1) ? -1 : 0;  //   twosComplement = (zigzag >> 1) ^ signmask;  //  // To work with 32 bit, we can operate on both but "carry" the lowest bit  // from the high word by shifting it up 31 bits to be the most significant bit  // of the low word.  var signFlipMask = -(bitsLow & 1);  bitsLow = ((bitsLow >>> 1) | (bitsHigh << 31)) ^ signFlipMask;  bitsHigh = (bitsHigh >>> 1) ^ signFlipMask;  return convert(bitsLow, bitsHigh);};/** * Joins two 32-bit values into a 32-bit IEEE floating point number and * converts it back into a Javascript number. * @param {number} bitsLow The low 32 bits of the binary number; * @param {number} bitsHigh The high 32 bits of the binary number. * @return {number} */jspb.utils.joinFloat32 = function(bitsLow, bitsHigh) {  var sign = ((bitsLow >> 31) * 2 + 1);  var exp = (bitsLow >>> 23) & 0xFF;  var mant = bitsLow & 0x7FFFFF;  if (exp == 0xFF) {    if (mant) {      return NaN;    } else {      return sign * Infinity;    }  }  if (exp == 0) {    // Denormal.    return sign * Math.pow(2, -149) * mant;  } else {    return sign * Math.pow(2, exp - 150) *           (mant + Math.pow(2, 23));  }};/** * Joins two 32-bit values into a 64-bit IEEE floating point number and * converts it back into a Javascript number. * @param {number} bitsLow The low 32 bits of the binary number; * @param {number} bitsHigh The high 32 bits of the binary number. * @return {number} */jspb.utils.joinFloat64 = function(bitsLow, bitsHigh) {  var sign = ((bitsHigh >> 31) * 2 + 1);  var exp = (bitsHigh >>> 20) & 0x7FF;  var mant = jspb.BinaryConstants.TWO_TO_32 * (bitsHigh & 0xFFFFF) + bitsLow;  if (exp == 0x7FF) {    if (mant) {      return NaN;    } else {      return sign * Infinity;    }  }  if (exp == 0) {    // Denormal.    return sign * Math.pow(2, -1074) * mant;  } else {    return sign * Math.pow(2, exp - 1075) *           (mant + jspb.BinaryConstants.TWO_TO_52);  }};/** * Joins two 32-bit values into an 8-character hash string. * @param {number} bitsLow * @param {number} bitsHigh * @return {string} */jspb.utils.joinHash64 = function(bitsLow, bitsHigh) {  var a = (bitsLow >>> 0) & 0xFF;  var b = (bitsLow >>> 8) & 0xFF;  var c = (bitsLow >>> 16) & 0xFF;  var d = (bitsLow >>> 24) & 0xFF;  var e = (bitsHigh >>> 0) & 0xFF;  var f = (bitsHigh >>> 8) & 0xFF;  var g = (bitsHigh >>> 16) & 0xFF;  var h = (bitsHigh >>> 24) & 0xFF;  return String.fromCharCode(a, b, c, d, e, f, g, h);};/** * Individual digits for number->string conversion. * @const {!Array<string>} */jspb.utils.DIGITS = [  '0', '1', '2', '3', '4', '5', '6', '7',  '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'];/** @const @private {number} '0' */jspb.utils.ZERO_CHAR_CODE_ = 48;/** @const @private {number} 'a' */jspb.utils.A_CHAR_CODE_ = 97;/** * Losslessly converts a 64-bit unsigned integer in 32:32 split representation * into a decimal string. * @param {number} bitsLow The low 32 bits of the binary number; * @param {number} bitsHigh The high 32 bits of the binary number. * @return {string} The binary number represented as a string. */jspb.utils.joinUnsignedDecimalString = function(bitsLow, bitsHigh) {  // Skip the expensive conversion if the number is small enough to use the  // built-in conversions.  if (bitsHigh <= 0x1FFFFF) {    return '' + jspb.utils.joinUint64(bitsLow, bitsHigh);  }  // What this code is doing is essentially converting the input number from  // base-2 to base-1e7, which allows us to represent the 64-bit range with  // only 3 (very large) digits. Those digits are then trivial to convert to  // a base-10 string.  // The magic numbers used here are -  // 2^24 = 16777216 = (1,6777216) in base-1e7.  // 2^48 = 281474976710656 = (2,8147497,6710656) in base-1e7.  // Split 32:32 representation into 16:24:24 representation so our  // intermediate digits don't overflow.  var low = bitsLow & 0xFFFFFF;  var mid = (((bitsLow >>> 24) | (bitsHigh << 8)) >>> 0) & 0xFFFFFF;  var high = (bitsHigh >> 16) & 0xFFFF;  // Assemble our three base-1e7 digits, ignoring carries. The maximum  // value in a digit at this step is representable as a 48-bit integer, which  // can be stored in a 64-bit floating point number.  var digitA = low + (mid * 6777216) + (high * 6710656);  var digitB = mid + (high * 8147497);  var digitC = (high * 2);  // Apply carries from A to B and from B to C.  var base = 10000000;  if (digitA >= base) {    digitB += Math.floor(digitA / base);    digitA %= base;  }  if (digitB >= base) {    digitC += Math.floor(digitB / base);    digitB %= base;  }  // Convert base-1e7 digits to base-10, with optional leading zeroes.  function decimalFrom1e7(digit1e7, needLeadingZeros) {    var partial = digit1e7 ? String(digit1e7) : '';    if (needLeadingZeros) {      return '0000000'.slice(partial.length) + partial;    }    return partial;  }  return decimalFrom1e7(digitC, /*needLeadingZeros=*/ 0) +      decimalFrom1e7(digitB, /*needLeadingZeros=*/ digitC) +      // If the final 1e7 digit didn't need leading zeros, we would have      // returned via the trivial code path at the top.      decimalFrom1e7(digitA, /*needLeadingZeros=*/ 1);};/** * Losslessly converts a 64-bit signed integer in 32:32 split representation * into a decimal string. * @param {number} bitsLow The low 32 bits of the binary number; * @param {number} bitsHigh The high 32 bits of the binary number. * @return {string} The binary number represented as a string. */jspb.utils.joinSignedDecimalString = function(bitsLow, bitsHigh) {  // If we're treating the input as a signed value and the high bit is set, do  // a manual two's complement conversion before the decimal conversion.  var negative = (bitsHigh & 0x80000000);  if (negative) {    bitsLow = (~bitsLow + 1) >>> 0;    var carry = (bitsLow == 0) ? 1 : 0;    bitsHigh = (~bitsHigh + carry) >>> 0;  }  var result = jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh);  return negative ? '-' + result : result;};/** * Convert an 8-character hash string representing either a signed or unsigned * 64-bit integer into its decimal representation without losing accuracy. * @param {string} hash The hash string to convert. * @param {boolean} signed True if we should treat the hash string as encoding *     a signed integer. * @return {string} */jspb.utils.hash64ToDecimalString = function(hash, signed) {  jspb.utils.splitHash64(hash);  var bitsLow = jspb.utils.split64Low;  var bitsHigh = jspb.utils.split64High;  return signed ?      jspb.utils.joinSignedDecimalString(bitsLow, bitsHigh) :      jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh);};/** * Converts an array of 8-character hash strings into their decimal * representations. * @param {!Array<string>} hashes The array of hash strings to convert. * @param {boolean} signed True if we should treat the hash string as encoding *     a signed integer. * @return {!Array<string>} */jspb.utils.hash64ArrayToDecimalStrings = function(hashes, signed) {  var result = new Array(hashes.length);  for (var i = 0; i < hashes.length; i++) {    result[i] = jspb.utils.hash64ToDecimalString(hashes[i], signed);  }  return result;};/** * Converts a signed or unsigned decimal string into its hash string * representation. * @param {string} dec * @return {string} */jspb.utils.decimalStringToHash64 = function(dec) {  goog.asserts.assert(dec.length > 0);  // Check for minus sign.  var minus = false;  if (dec[0] === '-') {    minus = true;    dec = dec.slice(1);  }  // Store result as a byte array.  var resultBytes = [0, 0, 0, 0, 0, 0, 0, 0];  // Set result to m*result + c.  function muladd(m, c) {    for (var i = 0; i < 8 && (m !== 1 || c > 0); i++) {      var r = m * resultBytes[i] + c;      resultBytes[i] = r & 0xFF;      c = r >>> 8;    }  }  // Negate the result bits.  function neg() {    for (var i = 0; i < 8; i++) {      resultBytes[i] = (~resultBytes[i]) & 0xFF;    }  }  // For each decimal digit, set result to 10*result + digit.  for (var i = 0; i < dec.length; i++) {    muladd(10, dec.charCodeAt(i) - jspb.utils.ZERO_CHAR_CODE_);  }  // If there's a minus sign, convert into two's complement.  if (minus) {    neg();    muladd(1, 1);  }  return goog.crypt.byteArrayToString(resultBytes);};/** * Converts a signed or unsigned decimal string into two 32-bit halves, and * stores them in the temp variables listed above. * @param {string} value The decimal string to convert. */jspb.utils.splitDecimalString = function(value) {  jspb.utils.splitHash64(jspb.utils.decimalStringToHash64(value));};/** * @param {number} nibble A 4-bit integer. * @return {string} * @private */jspb.utils.toHexDigit_ = function(nibble) {  return String.fromCharCode(      nibble < 10 ? jspb.utils.ZERO_CHAR_CODE_ + nibble :                    jspb.utils.A_CHAR_CODE_ - 10 + nibble);};/** * @param {number} hexCharCode * @return {number} * @private */jspb.utils.fromHexCharCode_ = function(hexCharCode) {  if (hexCharCode >= jspb.utils.A_CHAR_CODE_) {    return hexCharCode - jspb.utils.A_CHAR_CODE_ + 10;  }  return hexCharCode - jspb.utils.ZERO_CHAR_CODE_;};/** * Converts an 8-character hash string into its hexadecimal representation. * @param {string} hash * @return {string} */jspb.utils.hash64ToHexString = function(hash) {  var temp = new Array(18);  temp[0] = '0';  temp[1] = 'x';  for (var i = 0; i < 8; i++) {    var c = hash.charCodeAt(7 - i);    temp[i * 2 + 2] = jspb.utils.toHexDigit_(c >> 4);    temp[i * 2 + 3] = jspb.utils.toHexDigit_(c & 0xF);  }  var result = temp.join('');  return result;};/** * Converts a '0x<16 digits>' hex string into its hash string representation. * @param {string} hex * @return {string} */jspb.utils.hexStringToHash64 = function(hex) {  hex = hex.toLowerCase();  goog.asserts.assert(hex.length == 18);  goog.asserts.assert(hex[0] == '0');  goog.asserts.assert(hex[1] == 'x');  var result = '';  for (var i = 0; i < 8; i++) {    var hi = jspb.utils.fromHexCharCode_(hex.charCodeAt(i * 2 + 2));    var lo = jspb.utils.fromHexCharCode_(hex.charCodeAt(i * 2 + 3));    result = String.fromCharCode(hi * 16 + lo) + result;  }  return result;};/** * Convert an 8-character hash string representing either a signed or unsigned * 64-bit integer into a Javascript number. Will lose accuracy if the result is * larger than 2^52. * @param {string} hash The hash string to convert. * @param {boolean} signed True if the has should be interpreted as a signed *     number. * @return {number} */jspb.utils.hash64ToNumber = function(hash, signed) {  jspb.utils.splitHash64(hash);  var bitsLow = jspb.utils.split64Low;  var bitsHigh = jspb.utils.split64High;  return signed ? jspb.utils.joinInt64(bitsLow, bitsHigh) :                  jspb.utils.joinUint64(bitsLow, bitsHigh);};/** * Convert a Javascript number into an 8-character hash string. Will lose * precision if the value is non-integral or greater than 2^64. * @param {number} value The integer to convert. * @return {string} */jspb.utils.numberToHash64 = function(value) {  jspb.utils.splitInt64(value);  return jspb.utils.joinHash64(jspb.utils.split64Low,                                  jspb.utils.split64High);};/** * Counts the number of contiguous varints in a buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @return {number} The number of varints in the buffer. */jspb.utils.countVarints = function(buffer, start, end) {  // Count how many high bits of each byte were set in the buffer.  var count = 0;  for (var i = start; i < end; i++) {    count += buffer[i] >> 7;  }  // The number of varints in the buffer equals the size of the buffer minus  // the number of non-terminal bytes in the buffer (those with the high bit  // set).  return (end - start) - count;};/** * Counts the number of contiguous varint fields with the given field number in * the buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} field The field number to count. * @return {number} The number of matching fields in the buffer. */jspb.utils.countVarintFields = function(buffer, start, end, field) {  var count = 0;  var cursor = start;  var tag = field * 8 + jspb.BinaryConstants.WireType.VARINT;  if (tag < 128) {    // Single-byte field tag, we can use a slightly quicker count.    while (cursor < end) {      // Skip the field tag, or exit if we find a non-matching tag.      if (buffer[cursor++] != tag) return count;      // Field tag matches, we've found a valid field.      count++;      // Skip the varint.      while (1) {        var x = buffer[cursor++];        if ((x & 0x80) == 0) break;      }    }  } else {    while (cursor < end) {      // Skip the field tag, or exit if we find a non-matching tag.      var temp = tag;      while (temp > 128) {        if (buffer[cursor] != ((temp & 0x7F) | 0x80)) return count;        cursor++;        temp >>= 7;      }      if (buffer[cursor++] != temp) return count;      // Field tag matches, we've found a valid field.      count++;      // Skip the varint.      while (1) {        var x = buffer[cursor++];        if ((x & 0x80) == 0) break;      }    }  }  return count;};/** * Counts the number of contiguous fixed32 fields with the given tag in the * buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} tag The tag value to count. * @param {number} stride The number of bytes to skip per field. * @return {number} The number of fields with a matching tag in the buffer. * @private */jspb.utils.countFixedFields_ =    function(buffer, start, end, tag, stride) {  var count = 0;  var cursor = start;  if (tag < 128) {    // Single-byte field tag, we can use a slightly quicker count.    while (cursor < end) {      // Skip the field tag, or exit if we find a non-matching tag.      if (buffer[cursor++] != tag) return count;      // Field tag matches, we've found a valid field.      count++;      // Skip the value.      cursor += stride;    }  } else {    while (cursor < end) {      // Skip the field tag, or exit if we find a non-matching tag.      var temp = tag;      while (temp > 128) {        if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count;        temp >>= 7;      }      if (buffer[cursor++] != temp) return count;      // Field tag matches, we've found a valid field.      count++;      // Skip the value.      cursor += stride;    }  }  return count;};/** * Counts the number of contiguous fixed32 fields with the given field number * in the buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} field The field number to count. * @return {number} The number of matching fields in the buffer. */jspb.utils.countFixed32Fields = function(buffer, start, end, field) {  var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED32;  return jspb.utils.countFixedFields_(buffer, start, end, tag, 4);};/** * Counts the number of contiguous fixed64 fields with the given field number * in the buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} field The field number to count * @return {number} The number of matching fields in the buffer. */jspb.utils.countFixed64Fields = function(buffer, start, end, field) {  var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED64;  return jspb.utils.countFixedFields_(buffer, start, end, tag, 8);};/** * Counts the number of contiguous delimited fields with the given field number * in the buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} field The field number to count. * @return {number} The number of matching fields in the buffer. */jspb.utils.countDelimitedFields = function(buffer, start, end, field) {  var count = 0;  var cursor = start;  var tag = field * 8 + jspb.BinaryConstants.WireType.DELIMITED;  while (cursor < end) {    // Skip the field tag, or exit if we find a non-matching tag.    var temp = tag;    while (temp > 128) {      if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count;      temp >>= 7;    }    if (buffer[cursor++] != temp) return count;    // Field tag matches, we've found a valid field.    count++;    // Decode the length prefix.    var length = 0;    var shift = 1;    while (1) {      temp = buffer[cursor++];      length += (temp & 0x7f) * shift;      shift *= 128;      if ((temp & 0x80) == 0) break;    }    // Advance the cursor past the blob.    cursor += length;  }  return count;};/** * String-ify bytes for text format. Should be optimized away in non-debug. * The returned string uses \xXX escapes for all values and is itself quoted. * [1, 31] serializes to '"\x01\x1f"'. * @param {jspb.ByteSource} byteSource The bytes to serialize. * @return {string} Stringified bytes for text format. */jspb.utils.debugBytesToTextFormat = function(byteSource) {  var s = '"';  if (byteSource) {    var bytes = jspb.utils.byteSourceToUint8Array(byteSource);    for (var i = 0; i < bytes.length; i++) {      s += '\\x';      if (bytes[i] < 16) s += '0';      s += bytes[i].toString(16);    }  }  return s + '"';};/** * String-ify a scalar for text format. Should be optimized away in non-debug. * @param {string|number|boolean} scalar The scalar to stringify. * @return {string} Stringified scalar for text format. */jspb.utils.debugScalarToTextFormat = function(scalar) {  if (typeof scalar === 'string') {    return goog.string.quote(scalar);  } else {    return scalar.toString();  }};/** * Utility function: convert a string with codepoints 0--255 inclusive to a * Uint8Array. If any codepoints greater than 255 exist in the string, throws an * exception. * @param {string} str * @return {!Uint8Array} */jspb.utils.stringToByteArray = function(str) {  var arr = new Uint8Array(str.length);  for (var i = 0; i < str.length; i++) {    var codepoint = str.charCodeAt(i);    if (codepoint > 255) {      throw new Error('Conversion error: string contains codepoint ' +                      'outside of byte range');    }    arr[i] = codepoint;  }  return arr;};/** * Converts any type defined in jspb.ByteSource into a Uint8Array. * @param {!jspb.ByteSource} data * @return {!Uint8Array} * @suppress {invalidCasts} */jspb.utils.byteSourceToUint8Array = function(data) {  if (data.constructor === Uint8Array) {    return /** @type {!Uint8Array} */(data);  }  if (data.constructor === ArrayBuffer) {    data = /** @type {!ArrayBuffer} */(data);    return /** @type {!Uint8Array} */(new Uint8Array(data));  }  if (typeof Buffer != 'undefined' && data.constructor === Buffer) {    return /** @type {!Uint8Array} */ (        new Uint8Array(/** @type {?} */ (data)));  }  if (data.constructor === Array) {    data = /** @type {!Array<number>} */(data);    return /** @type {!Uint8Array} */(new Uint8Array(data));  }  if (data.constructor === String) {    data = /** @type {string} */(data);    return goog.crypt.base64.decodeStringToUint8Array(data);  }  goog.asserts.fail('Type not convertible to Uint8Array.');  return /** @type {!Uint8Array} */(new Uint8Array(0));};
 |