| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670 | #region Copyright notice and license// Protocol Buffers - Google's data interchange format// Copyright 2008 Google Inc.  All rights reserved.// https://developers.google.com/protocol-buffers///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:////     * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//     * Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.//     * Neither the name of Google Inc. nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.#endregionusing Google.Protobuf.Collections;using System;using System.IO;using System.Security;using System.Text;namespace Google.Protobuf{    /// <summary>    /// Encodes and writes protocol message fields.    /// </summary>    /// <remarks>    /// <para>    /// This class is generally used by generated code to write appropriate    /// primitives to the stream. It effectively encapsulates the lowest    /// levels of protocol buffer format. Unlike some other implementations,    /// this does not include combined "write tag and value" methods. Generated    /// code knows the exact byte representations of the tags they're going to write,    /// so there's no need to re-encode them each time. Manually-written code calling    /// this class should just call one of the <c>WriteTag</c> overloads before each value.    /// </para>    /// <para>    /// Repeated fields and map fields are not handled by this class; use <c>RepeatedField<T></c>    /// and <c>MapField<TKey, TValue></c> to serialize such fields.    /// </para>    /// </remarks>    [SecuritySafeCritical]    public sealed partial class CodedOutputStream : IDisposable    {        // "Local" copy of Encoding.UTF8, for efficiency. (Yes, it makes a difference.)        internal static readonly Encoding Utf8Encoding = Encoding.UTF8;        /// <summary>        /// The buffer size used by CreateInstance(Stream).        /// </summary>        public static readonly int DefaultBufferSize = 4096;        private readonly bool leaveOpen;        private readonly byte[] buffer;        private WriterInternalState state;        private readonly Stream output;        #region Construction        /// <summary>        /// Creates a new CodedOutputStream that writes directly to the given        /// byte array. If more bytes are written than fit in the array,        /// OutOfSpaceException will be thrown.        /// </summary>        public CodedOutputStream(byte[] flatArray) : this(flatArray, 0, flatArray.Length)        {        }        /// <summary>        /// Creates a new CodedOutputStream that writes directly to the given        /// byte array slice. If more bytes are written than fit in the array,        /// OutOfSpaceException will be thrown.        /// </summary>        private CodedOutputStream(byte[] buffer, int offset, int length)        {            this.output = null;            this.buffer = ProtoPreconditions.CheckNotNull(buffer, nameof(buffer));            this.state.position = offset;            this.state.limit = offset + length;            WriteBufferHelper.Initialize(this, out this.state.writeBufferHelper);            leaveOpen = true; // Simple way of avoiding trying to dispose of a null reference        }        private CodedOutputStream(Stream output, byte[] buffer, bool leaveOpen)        {            this.output = ProtoPreconditions.CheckNotNull(output, nameof(output));            this.buffer = buffer;            this.state.position = 0;            this.state.limit = buffer.Length;            WriteBufferHelper.Initialize(this, out this.state.writeBufferHelper);            this.leaveOpen = leaveOpen;        }        /// <summary>        /// Creates a new <see cref="CodedOutputStream" /> which write to the given stream, and disposes of that        /// stream when the returned <c>CodedOutputStream</c> is disposed.        /// </summary>        /// <param name="output">The stream to write to. It will be disposed when the returned <c>CodedOutputStream is disposed.</c></param>        public CodedOutputStream(Stream output) : this(output, DefaultBufferSize, false)        {        }        /// <summary>        /// Creates a new CodedOutputStream which write to the given stream and uses        /// the specified buffer size.        /// </summary>        /// <param name="output">The stream to write to. It will be disposed when the returned <c>CodedOutputStream is disposed.</c></param>        /// <param name="bufferSize">The size of buffer to use internally.</param>        public CodedOutputStream(Stream output, int bufferSize) : this(output, new byte[bufferSize], false)        {        }        /// <summary>        /// Creates a new CodedOutputStream which write to the given stream.        /// </summary>        /// <param name="output">The stream to write to.</param>        /// <param name="leaveOpen">If <c>true</c>, <paramref name="output"/> is left open when the returned <c>CodedOutputStream</c> is disposed;        /// if <c>false</c>, the provided stream is disposed as well.</param>        public CodedOutputStream(Stream output, bool leaveOpen) : this(output, DefaultBufferSize, leaveOpen)        {        }        /// <summary>        /// Creates a new CodedOutputStream which write to the given stream and uses        /// the specified buffer size.        /// </summary>        /// <param name="output">The stream to write to.</param>        /// <param name="bufferSize">The size of buffer to use internally.</param>        /// <param name="leaveOpen">If <c>true</c>, <paramref name="output"/> is left open when the returned <c>CodedOutputStream</c> is disposed;        /// if <c>false</c>, the provided stream is disposed as well.</param>        public CodedOutputStream(Stream output, int bufferSize, bool leaveOpen) : this(output, new byte[bufferSize], leaveOpen)        {        }        #endregion        /// <summary>        /// Returns the current position in the stream, or the position in the output buffer        /// </summary>        public long Position        {            get            {                if (output != null)                {                    return output.Position + state.position;                }                return state.position;            }        }        #region Writing of values (not including tags)        /// <summary>        /// Writes a double field value, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteDouble(double value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteDouble(ref span, ref state, value);        }        /// <summary>        /// Writes a float field value, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteFloat(float value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteFloat(ref span, ref state, value);        }        /// <summary>        /// Writes a uint64 field value, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteUInt64(ulong value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteUInt64(ref span, ref state, value);        }        /// <summary>        /// Writes an int64 field value, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteInt64(long value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteInt64(ref span, ref state, value);        }        /// <summary>        /// Writes an int32 field value, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteInt32(int value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteInt32(ref span, ref state, value);        }        /// <summary>        /// Writes a fixed64 field value, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteFixed64(ulong value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteFixed64(ref span, ref state, value);        }        /// <summary>        /// Writes a fixed32 field value, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteFixed32(uint value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteFixed32(ref span, ref state, value);        }        /// <summary>        /// Writes a bool field value, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteBool(bool value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteBool(ref span, ref state, value);        }        /// <summary>        /// Writes a string field value, without a tag, to the stream.        /// The data is length-prefixed.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteString(string value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteString(ref span, ref state, value);        }        /// <summary>        /// Writes a message, without a tag, to the stream.        /// The data is length-prefixed.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteMessage(IMessage value)        {            // TODO(jtattermusch): if the message doesn't implement IBufferMessage (and thus does not provide the InternalWriteTo method),            // what we're doing here works fine, but could be more efficient.            // For now, this inefficiency is fine, considering this is only a backward-compatibility scenario (and regenerating the code fixes it).            var span = new Span<byte>(buffer);            WriteContext.Initialize(ref span, ref state, out WriteContext ctx);            try            {                WritingPrimitivesMessages.WriteMessage(ref ctx, value);            }            finally            {                ctx.CopyStateTo(this);            }        }        /// <summary>        /// Writes a message, without a tag, to the stream.        /// Only the message data is written, without a length-delimiter.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteRawMessage(IMessage value)        {            // TODO(jtattermusch): if the message doesn't implement IBufferMessage (and thus does not provide the InternalWriteTo method),            // what we're doing here works fine, but could be more efficient.            // For now, this inefficiency is fine, considering this is only a backward-compatibility scenario (and regenerating the code fixes it).            var span = new Span<byte>(buffer);            WriteContext.Initialize(ref span, ref state, out WriteContext ctx);            try            {                WritingPrimitivesMessages.WriteRawMessage(ref ctx, value);            }            finally            {                ctx.CopyStateTo(this);            }        }        /// <summary>        /// Writes a group, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteGroup(IMessage value)        {            var span = new Span<byte>(buffer);            WriteContext.Initialize(ref span, ref state, out WriteContext ctx);            try            {                WritingPrimitivesMessages.WriteGroup(ref ctx, value);            }            finally            {                ctx.CopyStateTo(this);            }        }        /// <summary>        /// Write a byte string, without a tag, to the stream.        /// The data is length-prefixed.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteBytes(ByteString value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteBytes(ref span, ref state, value);        }        /// <summary>        /// Writes a uint32 value, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteUInt32(uint value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteUInt32(ref span, ref state, value);        }        /// <summary>        /// Writes an enum value, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteEnum(int value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteEnum(ref span, ref state, value);        }        /// <summary>        /// Writes an sfixed32 value, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write.</param>        public void WriteSFixed32(int value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteSFixed32(ref span, ref state, value);        }        /// <summary>        /// Writes an sfixed64 value, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteSFixed64(long value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteSFixed64(ref span, ref state, value);        }        /// <summary>        /// Writes an sint32 value, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteSInt32(int value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteSInt32(ref span, ref state, value);        }        /// <summary>        /// Writes an sint64 value, without a tag, to the stream.        /// </summary>        /// <param name="value">The value to write</param>        public void WriteSInt64(long value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteSInt64(ref span, ref state, value);        }        /// <summary>        /// Writes a length (in bytes) for length-delimited data.        /// </summary>        /// <remarks>        /// This method simply writes a rawint, but exists for clarity in calling code.        /// </remarks>        /// <param name="length">Length value, in bytes.</param>        public void WriteLength(int length)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteLength(ref span, ref state, length);        }        #endregion        #region Raw tag writing        /// <summary>        /// Encodes and writes a tag.        /// </summary>        /// <param name="fieldNumber">The number of the field to write the tag for</param>        /// <param name="type">The wire format type of the tag to write</param>        public void WriteTag(int fieldNumber, WireFormat.WireType type)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteTag(ref span, ref state, fieldNumber, type);        }        /// <summary>        /// Writes an already-encoded tag.        /// </summary>        /// <param name="tag">The encoded tag</param>        public void WriteTag(uint tag)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteTag(ref span, ref state, tag);        }        /// <summary>        /// Writes the given single-byte tag directly to the stream.        /// </summary>        /// <param name="b1">The encoded tag</param>        public void WriteRawTag(byte b1)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteRawTag(ref span, ref state, b1);        }        /// <summary>        /// Writes the given two-byte tag directly to the stream.        /// </summary>        /// <param name="b1">The first byte of the encoded tag</param>        /// <param name="b2">The second byte of the encoded tag</param>        public void WriteRawTag(byte b1, byte b2)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteRawTag(ref span, ref state, b1, b2);        }        /// <summary>        /// Writes the given three-byte tag directly to the stream.        /// </summary>        /// <param name="b1">The first byte of the encoded tag</param>        /// <param name="b2">The second byte of the encoded tag</param>        /// <param name="b3">The third byte of the encoded tag</param>        public void WriteRawTag(byte b1, byte b2, byte b3)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteRawTag(ref span, ref state, b1, b2, b3);        }        /// <summary>        /// Writes the given four-byte tag directly to the stream.        /// </summary>        /// <param name="b1">The first byte of the encoded tag</param>        /// <param name="b2">The second byte of the encoded tag</param>        /// <param name="b3">The third byte of the encoded tag</param>        /// <param name="b4">The fourth byte of the encoded tag</param>        public void WriteRawTag(byte b1, byte b2, byte b3, byte b4)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteRawTag(ref span, ref state, b1, b2, b3, b4);        }        /// <summary>        /// Writes the given five-byte tag directly to the stream.        /// </summary>        /// <param name="b1">The first byte of the encoded tag</param>        /// <param name="b2">The second byte of the encoded tag</param>        /// <param name="b3">The third byte of the encoded tag</param>        /// <param name="b4">The fourth byte of the encoded tag</param>        /// <param name="b5">The fifth byte of the encoded tag</param>        public void WriteRawTag(byte b1, byte b2, byte b3, byte b4, byte b5)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteRawTag(ref span, ref state, b1, b2, b3, b4, b5);        }        #endregion        #region Underlying writing primitives                /// <summary>        /// Writes a 32 bit value as a varint. The fast route is taken when        /// there's enough buffer space left to whizz through without checking        /// for each byte; otherwise, we resort to calling WriteRawByte each time.        /// </summary>        internal void WriteRawVarint32(uint value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteRawVarint32(ref span, ref state, value);        }        internal void WriteRawVarint64(ulong value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteRawVarint64(ref span, ref state, value);        }        internal void WriteRawLittleEndian32(uint value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteRawLittleEndian32(ref span, ref state, value);        }        internal void WriteRawLittleEndian64(ulong value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteRawLittleEndian64(ref span, ref state, value);        }        internal void WriteRawByte(byte value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteRawByte(ref span, ref state, value);        }        internal void WriteRawByte(uint value)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteRawByte(ref span, ref state, value);        }        /// <summary>        /// Writes out an array of bytes.        /// </summary>        internal void WriteRawBytes(byte[] value)        {            WriteRawBytes(value, 0, value.Length);        }        /// <summary>        /// Writes out part of an array of bytes.        /// </summary>        internal void WriteRawBytes(byte[] value, int offset, int length)        {            var span = new Span<byte>(buffer);            WritingPrimitives.WriteRawBytes(ref span, ref state, value, offset, length);        }        #endregion        ///// <summary>        ///// Encode a 32-bit value with ZigZag encoding.        ///// </summary>        ///// <remarks>        ///// ZigZag encodes signed integers into values that can be efficiently        ///// encoded with varint.  (Otherwise, negative values must be         ///// sign-extended to 64 bits to be varint encoded, thus always taking        ///// 10 bytes on the wire.)        ///// </remarks>        //internal static uint EncodeZigZag32(int n)        //{        //    // Note:  the right-shift must be arithmetic        //    return (uint) ((n << 1) ^ (n >> 31));        //}        ///// <summary>        ///// Encode a 64-bit value with ZigZag encoding.        ///// </summary>        ///// <remarks>        ///// ZigZag encodes signed integers into values that can be efficiently        ///// encoded with varint.  (Otherwise, negative values must be         ///// sign-extended to 64 bits to be varint encoded, thus always taking        ///// 10 bytes on the wire.)        ///// </remarks>        //internal static ulong EncodeZigZag64(long n)        //{        //    return (ulong) ((n << 1) ^ (n >> 63));        //}        //private void RefreshBuffer()        //{        //    if (output == null)        //    {        //        // We're writing to a single buffer.        //        throw new OutOfSpaceException();        //    }        //    // Since we have an output stream, this is our buffer        //    // and buffer offset == 0        //    output.Write(buffer, 0, position);        //    position = 0;        //}        /// <summary>        /// Indicates that a CodedOutputStream wrapping a flat byte array        /// ran out of space.        /// </summary>        public sealed class OutOfSpaceException : IOException        {            internal OutOfSpaceException()                : base("CodedOutputStream was writing to a flat byte array and ran out of space.")            {            }        }        /// <summary>        /// Flushes any buffered data and optionally closes the underlying stream, if any.        /// </summary>        /// <remarks>        /// <para>        /// By default, any underlying stream is closed by this method. To configure this behaviour,        /// use a constructor overload with a <c>leaveOpen</c> parameter. If this instance does not        /// have an underlying stream, this method does nothing.        /// </para>        /// <para>        /// For the sake of efficiency, calling this method does not prevent future write calls - but        /// if a later write ends up writing to a stream which has been disposed, that is likely to        /// fail. It is recommend that you not call any other methods after this.        /// </para>        /// </remarks>        public void Dispose()        {            Flush();            if (!leaveOpen)            {                output.Dispose();            }        }        /// <summary>        /// Flushes any buffered data to the underlying stream (if there is one).        /// </summary>        public void Flush()        {            var span = new Span<byte>(buffer);            WriteBufferHelper.Flush(ref span, ref state);                        /*if (output != null)            {                RefreshBuffer();            }*/        }        /// <summary>        /// Verifies that SpaceLeft returns zero. It's common to create a byte array        /// that is exactly big enough to hold a message, then write to it with        /// a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that        /// the message was actually as big as expected, which can help finding bugs.        /// </summary>        public void CheckNoSpaceLeft()        {            WriteBufferHelper.CheckNoSpaceLeft(ref state);        }        /// <summary>        /// If writing to a flat array, returns the space left in the array. Otherwise,        /// throws an InvalidOperationException.        /// </summary>        public int SpaceLeft => WriteBufferHelper.GetSpaceLeft(ref state);        internal byte[] InternalBuffer => buffer;        internal Stream InternalOutputStream => output;        internal ref WriterInternalState InternalState => ref state;    }}
 |