encode_decode.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726
  1. // Protocol Buffers - Google's data interchange format
  2. // Copyright 2014 Google Inc. All rights reserved.
  3. // https://developers.google.com/protocol-buffers/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are
  7. // met:
  8. //
  9. // * Redistributions of source code must retain the above copyright
  10. // notice, this list of conditions and the following disclaimer.
  11. // * Redistributions in binary form must reproduce the above
  12. // copyright notice, this list of conditions and the following disclaimer
  13. // in the documentation and/or other materials provided with the
  14. // distribution.
  15. // * Neither the name of Google Inc. nor the names of its
  16. // contributors may be used to endorse or promote products derived from
  17. // this software without specific prior written permission.
  18. //
  19. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  20. // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  21. // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  22. // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  23. // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  24. // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  25. // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  26. // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  27. // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  28. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  29. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30. #include "protobuf.h"
  31. // This function is equivalent to rb_str_cat(), but unlike the real
  32. // rb_str_cat(), it doesn't leak memory in some versions of Ruby.
  33. // For more information, see:
  34. // https://bugs.ruby-lang.org/issues/11328
  35. VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) {
  36. char *p;
  37. size_t oldlen = RSTRING_LEN(rb_str);
  38. rb_str_modify_expand(rb_str, len);
  39. p = RSTRING_PTR(rb_str);
  40. memcpy(p + oldlen, str, len);
  41. rb_str_set_len(rb_str, oldlen + len);
  42. return rb_str;
  43. }
  44. // The code below also comes from upb's prototype Ruby binding, developed by
  45. // haberman@.
  46. /* stringsink *****************************************************************/
  47. static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {
  48. stringsink *sink = _sink;
  49. sink->len = 0;
  50. return sink;
  51. }
  52. static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,
  53. size_t len, const upb_bufhandle *handle) {
  54. stringsink *sink = _sink;
  55. size_t new_size = sink->size;
  56. UPB_UNUSED(hd);
  57. UPB_UNUSED(handle);
  58. while (sink->len + len > new_size) {
  59. new_size *= 2;
  60. }
  61. if (new_size != sink->size) {
  62. sink->ptr = realloc(sink->ptr, new_size);
  63. sink->size = new_size;
  64. }
  65. memcpy(sink->ptr + sink->len, ptr, len);
  66. sink->len += len;
  67. return len;
  68. }
  69. void stringsink_init(stringsink *sink) {
  70. upb_byteshandler_init(&sink->handler);
  71. upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);
  72. upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);
  73. upb_bytessink_reset(&sink->sink, &sink->handler, sink);
  74. sink->size = 32;
  75. sink->ptr = malloc(sink->size);
  76. sink->len = 0;
  77. }
  78. void stringsink_uninit(stringsink *sink) {
  79. free(sink->ptr);
  80. }
  81. // -----------------------------------------------------------------------------
  82. // Parsing.
  83. // -----------------------------------------------------------------------------
  84. #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs)
  85. typedef struct {
  86. size_t ofs;
  87. int32_t hasbit;
  88. } field_handlerdata_t;
  89. // Creates a handlerdata that contains the offset and the hasbit for the field
  90. static const void* newhandlerdata(upb_handlers* h, uint32_t ofs, int32_t hasbit) {
  91. field_handlerdata_t *hd = ALLOC(field_handlerdata_t);
  92. hd->ofs = ofs;
  93. hd->hasbit = hasbit;
  94. upb_handlers_addcleanup(h, hd, xfree);
  95. return hd;
  96. }
  97. typedef struct {
  98. size_t ofs;
  99. int32_t hasbit;
  100. VALUE subklass;
  101. } submsg_handlerdata_t;
  102. // Creates a handlerdata that contains offset and submessage type information.
  103. static const void *newsubmsghandlerdata(upb_handlers* h,
  104. uint32_t ofs,
  105. int32_t hasbit,
  106. VALUE subklass) {
  107. submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t);
  108. hd->ofs = ofs;
  109. hd->hasbit = hasbit;
  110. hd->subklass = subklass;
  111. upb_handlers_addcleanup(h, hd, xfree);
  112. return hd;
  113. }
  114. typedef struct {
  115. size_t ofs; // union data slot
  116. size_t case_ofs; // oneof_case field
  117. uint32_t oneof_case_num; // oneof-case number to place in oneof_case field
  118. VALUE subklass;
  119. } oneof_handlerdata_t;
  120. static const void *newoneofhandlerdata(upb_handlers *h,
  121. uint32_t ofs,
  122. uint32_t case_ofs,
  123. const upb_fielddef *f,
  124. const Descriptor* desc) {
  125. oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t);
  126. hd->ofs = ofs;
  127. hd->case_ofs = case_ofs;
  128. // We reuse the field tag number as a oneof union discriminant tag. Note that
  129. // we don't expose these numbers to the user, so the only requirement is that
  130. // we have some unique ID for each union case/possibility. The field tag
  131. // numbers are already present and are easy to use so there's no reason to
  132. // create a separate ID space. In addition, using the field tag number here
  133. // lets us easily look up the field in the oneof accessor.
  134. hd->oneof_case_num = upb_fielddef_number(f);
  135. if (is_value_field(f)) {
  136. hd->oneof_case_num |= ONEOF_CASE_MASK;
  137. }
  138. hd->subklass = field_type_class(desc->layout, f);
  139. upb_handlers_addcleanup(h, hd, xfree);
  140. return hd;
  141. }
  142. // A handler that starts a repeated field. Gets the Repeated*Field instance for
  143. // this field (such an instance always exists even in an empty message).
  144. static void *startseq_handler(void* closure, const void* hd) {
  145. MessageHeader* msg = closure;
  146. const size_t *ofs = hd;
  147. return (void*)DEREF(msg, *ofs, VALUE);
  148. }
  149. // Handlers that append primitive values to a repeated field.
  150. #define DEFINE_APPEND_HANDLER(type, ctype) \
  151. static bool append##type##_handler(void *closure, const void *hd, \
  152. ctype val) { \
  153. VALUE ary = (VALUE)closure; \
  154. RepeatedField_push_native(ary, &val); \
  155. return true; \
  156. }
  157. DEFINE_APPEND_HANDLER(bool, bool)
  158. DEFINE_APPEND_HANDLER(int32, int32_t)
  159. DEFINE_APPEND_HANDLER(uint32, uint32_t)
  160. DEFINE_APPEND_HANDLER(float, float)
  161. DEFINE_APPEND_HANDLER(int64, int64_t)
  162. DEFINE_APPEND_HANDLER(uint64, uint64_t)
  163. DEFINE_APPEND_HANDLER(double, double)
  164. // Appends a string to a repeated field.
  165. static void* appendstr_handler(void *closure,
  166. const void *hd,
  167. size_t size_hint) {
  168. VALUE ary = (VALUE)closure;
  169. VALUE str = rb_str_new2("");
  170. rb_enc_associate(str, kRubyStringUtf8Encoding);
  171. RepeatedField_push_native(ary, &str);
  172. return (void*)str;
  173. }
  174. static void set_hasbit(void *closure, int32_t hasbit) {
  175. if (hasbit > 0) {
  176. uint8_t* storage = closure;
  177. storage[hasbit/8] |= 1 << (hasbit % 8);
  178. }
  179. }
  180. // Appends a 'bytes' string to a repeated field.
  181. static void* appendbytes_handler(void *closure,
  182. const void *hd,
  183. size_t size_hint) {
  184. VALUE ary = (VALUE)closure;
  185. VALUE str = rb_str_new2("");
  186. rb_enc_associate(str, kRubyString8bitEncoding);
  187. RepeatedField_push_native(ary, &str);
  188. return (void*)str;
  189. }
  190. // Sets a non-repeated string field in a message.
  191. static void* str_handler(void *closure,
  192. const void *hd,
  193. size_t size_hint) {
  194. MessageHeader* msg = closure;
  195. const field_handlerdata_t *fieldhandler = hd;
  196. VALUE str = rb_str_new2("");
  197. rb_enc_associate(str, kRubyStringUtf8Encoding);
  198. DEREF(msg, fieldhandler->ofs, VALUE) = str;
  199. set_hasbit(closure, fieldhandler->hasbit);
  200. return (void*)str;
  201. }
  202. // Sets a non-repeated 'bytes' field in a message.
  203. static void* bytes_handler(void *closure,
  204. const void *hd,
  205. size_t size_hint) {
  206. MessageHeader* msg = closure;
  207. const field_handlerdata_t *fieldhandler = hd;
  208. VALUE str = rb_str_new2("");
  209. rb_enc_associate(str, kRubyString8bitEncoding);
  210. DEREF(msg, fieldhandler->ofs, VALUE) = str;
  211. set_hasbit(closure, fieldhandler->hasbit);
  212. return (void*)str;
  213. }
  214. static size_t stringdata_handler(void* closure, const void* hd,
  215. const char* str, size_t len,
  216. const upb_bufhandle* handle) {
  217. VALUE rb_str = (VALUE)closure;
  218. noleak_rb_str_cat(rb_str, str, len);
  219. return len;
  220. }
  221. static bool stringdata_end_handler(void* closure, const void* hd) {
  222. VALUE rb_str = (VALUE)closure;
  223. rb_obj_freeze(rb_str);
  224. return true;
  225. }
  226. static bool appendstring_end_handler(void* closure, const void* hd) {
  227. VALUE rb_str = (VALUE)closure;
  228. rb_obj_freeze(rb_str);
  229. return true;
  230. }
  231. // Appends a submessage to a repeated field (a regular Ruby array for now).
  232. static void *appendsubmsg_handler(void *closure, const void *hd) {
  233. VALUE ary = (VALUE)closure;
  234. const submsg_handlerdata_t *submsgdata = hd;
  235. MessageHeader* submsg;
  236. VALUE submsg_rb = rb_class_new_instance(0, NULL, submsgdata->subklass);
  237. RepeatedField_push(ary, submsg_rb);
  238. TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
  239. return submsg;
  240. }
  241. // Appends a wrapper to a repeated field (a regular Ruby array for now).
  242. static void *appendwrapper_handler(void *closure, const void *hd) {
  243. VALUE ary = (VALUE)closure;
  244. int size = RepeatedField_size(ary);
  245. (void)hd;
  246. RepeatedField_push(ary, Qnil);
  247. return RepeatedField_index_native(ary, size);
  248. }
  249. // Sets a non-repeated submessage field in a message.
  250. static void *submsg_handler(void *closure, const void *hd) {
  251. MessageHeader* msg = closure;
  252. const submsg_handlerdata_t* submsgdata = hd;
  253. VALUE submsg_rb;
  254. MessageHeader* submsg;
  255. if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) {
  256. DEREF(msg, submsgdata->ofs, VALUE) =
  257. rb_class_new_instance(0, NULL, submsgdata->subklass);
  258. }
  259. set_hasbit(closure, submsgdata->hasbit);
  260. submsg_rb = DEREF(msg, submsgdata->ofs, VALUE);
  261. TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
  262. return submsg;
  263. }
  264. static void* startwrapper(void* closure, const void* hd) {
  265. char* msg = closure;
  266. const submsg_handlerdata_t* submsgdata = hd;
  267. set_hasbit(closure, submsgdata->hasbit);
  268. return msg + submsgdata->ofs;
  269. }
  270. // Handler data for startmap/endmap handlers.
  271. typedef struct {
  272. size_t ofs;
  273. upb_fieldtype_t key_field_type;
  274. upb_fieldtype_t value_field_type;
  275. VALUE subklass;
  276. } map_handlerdata_t;
  277. // Temporary frame for map parsing: at the beginning of a map entry message, a
  278. // submsg handler allocates a frame to hold (i) a reference to the Map object
  279. // into which this message will be inserted and (ii) storage slots to
  280. // temporarily hold the key and value for this map entry until the end of the
  281. // submessage. When the submessage ends, another handler is called to insert the
  282. // value into the map.
  283. typedef struct {
  284. VALUE map;
  285. const map_handlerdata_t* handlerdata;
  286. char key_storage[NATIVE_SLOT_MAX_SIZE];
  287. char value_storage[NATIVE_SLOT_MAX_SIZE];
  288. } map_parse_frame_t;
  289. static void MapParseFrame_mark(void* _self) {
  290. map_parse_frame_t* frame = _self;
  291. // This shouldn't strictly be necessary since this should be rooted by the
  292. // message itself, but it can't hurt.
  293. rb_gc_mark(frame->map);
  294. native_slot_mark(frame->handlerdata->key_field_type, &frame->key_storage);
  295. native_slot_mark(frame->handlerdata->value_field_type, &frame->value_storage);
  296. }
  297. void MapParseFrame_free(void* self) {
  298. xfree(self);
  299. }
  300. rb_data_type_t MapParseFrame_type = {
  301. "MapParseFrame",
  302. { MapParseFrame_mark, MapParseFrame_free, NULL },
  303. };
  304. // Handler to begin a map entry: allocates a temporary frame. This is the
  305. // 'startsubmsg' handler on the msgdef that contains the map field.
  306. static void *startmap_handler(void *closure, const void *hd) {
  307. MessageHeader* msg = closure;
  308. const map_handlerdata_t* mapdata = hd;
  309. map_parse_frame_t* frame = ALLOC(map_parse_frame_t);
  310. VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE);
  311. frame->handlerdata = mapdata;
  312. frame->map = map_rb;
  313. native_slot_init(mapdata->key_field_type, &frame->key_storage);
  314. native_slot_init(mapdata->value_field_type, &frame->value_storage);
  315. Map_set_frame(map_rb,
  316. TypedData_Wrap_Struct(rb_cObject, &MapParseFrame_type, frame));
  317. return frame;
  318. }
  319. static bool endmap_handler(void *closure, const void *hd) {
  320. MessageHeader* msg = closure;
  321. const map_handlerdata_t* mapdata = hd;
  322. VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE);
  323. Map_set_frame(map_rb, Qnil);
  324. return true;
  325. }
  326. // Handler to end a map entry: inserts the value defined during the message into
  327. // the map. This is the 'endmsg' handler on the map entry msgdef.
  328. static bool endmapentry_handler(void* closure, const void* hd, upb_status* s) {
  329. map_parse_frame_t* frame = closure;
  330. const map_handlerdata_t* mapdata = hd;
  331. VALUE key = native_slot_get(
  332. mapdata->key_field_type, Qnil,
  333. &frame->key_storage);
  334. VALUE value = native_slot_get(
  335. mapdata->value_field_type, mapdata->subklass,
  336. &frame->value_storage);
  337. Map_index_set(frame->map, key, value);
  338. return true;
  339. }
  340. // Allocates a new map_handlerdata_t given the map entry message definition. If
  341. // the offset of the field within the parent message is also given, that is
  342. // added to the handler data as well. Note that this is called *twice* per map
  343. // field: once in the parent message handler setup when setting the startsubmsg
  344. // handler and once in the map entry message handler setup when setting the
  345. // key/value and endmsg handlers. The reason is that there is no easy way to
  346. // pass the handlerdata down to the sub-message handler setup.
  347. static map_handlerdata_t* new_map_handlerdata(
  348. size_t ofs,
  349. const upb_msgdef* mapentry_def,
  350. const Descriptor* desc) {
  351. const upb_fielddef* key_field;
  352. const upb_fielddef* value_field;
  353. map_handlerdata_t* hd = ALLOC(map_handlerdata_t);
  354. hd->ofs = ofs;
  355. key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD);
  356. assert(key_field != NULL);
  357. hd->key_field_type = upb_fielddef_type(key_field);
  358. value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD);
  359. assert(value_field != NULL);
  360. hd->value_field_type = upb_fielddef_type(value_field);
  361. hd->subklass = field_type_class(desc->layout, value_field);
  362. return hd;
  363. }
  364. // Handlers that set primitive values in oneofs.
  365. #define DEFINE_ONEOF_HANDLER(type, ctype) \
  366. static bool oneof##type##_handler(void *closure, const void *hd, \
  367. ctype val) { \
  368. const oneof_handlerdata_t *oneofdata = hd; \
  369. DEREF(closure, oneofdata->case_ofs, uint32_t) = \
  370. oneofdata->oneof_case_num; \
  371. DEREF(closure, oneofdata->ofs, ctype) = val; \
  372. return true; \
  373. }
  374. DEFINE_ONEOF_HANDLER(bool, bool)
  375. DEFINE_ONEOF_HANDLER(int32, int32_t)
  376. DEFINE_ONEOF_HANDLER(uint32, uint32_t)
  377. DEFINE_ONEOF_HANDLER(float, float)
  378. DEFINE_ONEOF_HANDLER(int64, int64_t)
  379. DEFINE_ONEOF_HANDLER(uint64, uint64_t)
  380. DEFINE_ONEOF_HANDLER(double, double)
  381. #undef DEFINE_ONEOF_HANDLER
  382. // Handlers for strings in a oneof.
  383. static void *oneofstr_handler(void *closure,
  384. const void *hd,
  385. size_t size_hint) {
  386. MessageHeader* msg = closure;
  387. const oneof_handlerdata_t *oneofdata = hd;
  388. VALUE str = rb_str_new2("");
  389. rb_enc_associate(str, kRubyStringUtf8Encoding);
  390. DEREF(msg, oneofdata->case_ofs, uint32_t) =
  391. oneofdata->oneof_case_num;
  392. DEREF(msg, oneofdata->ofs, VALUE) = str;
  393. return (void*)str;
  394. }
  395. static void *oneofbytes_handler(void *closure,
  396. const void *hd,
  397. size_t size_hint) {
  398. MessageHeader* msg = closure;
  399. const oneof_handlerdata_t *oneofdata = hd;
  400. VALUE str = rb_str_new2("");
  401. rb_enc_associate(str, kRubyString8bitEncoding);
  402. DEREF(msg, oneofdata->case_ofs, uint32_t) =
  403. oneofdata->oneof_case_num;
  404. DEREF(msg, oneofdata->ofs, VALUE) = str;
  405. return (void*)str;
  406. }
  407. static bool oneofstring_end_handler(void* closure, const void* hd) {
  408. VALUE rb_str = rb_str_new2("");
  409. rb_obj_freeze(rb_str);
  410. return true;
  411. }
  412. // Handler for a submessage field in a oneof.
  413. static void *oneofsubmsg_handler(void *closure,
  414. const void *hd) {
  415. MessageHeader* msg = closure;
  416. const oneof_handlerdata_t *oneofdata = hd;
  417. uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t);
  418. VALUE submsg_rb;
  419. MessageHeader* submsg;
  420. if (oldcase != oneofdata->oneof_case_num ||
  421. DEREF(msg, oneofdata->ofs, VALUE) == Qnil) {
  422. DEREF(msg, oneofdata->ofs, VALUE) =
  423. rb_class_new_instance(0, NULL, oneofdata->subklass);
  424. }
  425. // Set the oneof case *after* allocating the new class instance -- otherwise,
  426. // if the Ruby GC is invoked as part of a call into the VM, it might invoke
  427. // our mark routines, and our mark routines might see the case value
  428. // indicating a VALUE is present and expect a valid VALUE. See comment in
  429. // layout_set() for more detail: basically, the change to the value and the
  430. // case must be atomic w.r.t. the Ruby VM.
  431. DEREF(msg, oneofdata->case_ofs, uint32_t) =
  432. oneofdata->oneof_case_num;
  433. submsg_rb = DEREF(msg, oneofdata->ofs, VALUE);
  434. TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
  435. return submsg;
  436. }
  437. bool is_wrapper(const upb_msgdef* m) {
  438. switch (upb_msgdef_wellknowntype(m)) {
  439. case UPB_WELLKNOWN_DOUBLEVALUE:
  440. case UPB_WELLKNOWN_FLOATVALUE:
  441. case UPB_WELLKNOWN_INT64VALUE:
  442. case UPB_WELLKNOWN_UINT64VALUE:
  443. case UPB_WELLKNOWN_INT32VALUE:
  444. case UPB_WELLKNOWN_UINT32VALUE:
  445. case UPB_WELLKNOWN_STRINGVALUE:
  446. case UPB_WELLKNOWN_BYTESVALUE:
  447. case UPB_WELLKNOWN_BOOLVALUE:
  448. return true;
  449. default:
  450. return false;
  451. }
  452. }
  453. // Set up handlers for a repeated field.
  454. static void add_handlers_for_repeated_field(upb_handlers *h,
  455. const Descriptor* desc,
  456. const upb_fielddef *f,
  457. size_t offset) {
  458. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  459. attr.handler_data = newhandlerdata(h, offset, -1);
  460. upb_handlers_setstartseq(h, f, startseq_handler, &attr);
  461. switch (upb_fielddef_type(f)) {
  462. #define SET_HANDLER(utype, ltype) \
  463. case utype: \
  464. upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \
  465. break;
  466. SET_HANDLER(UPB_TYPE_BOOL, bool);
  467. SET_HANDLER(UPB_TYPE_INT32, int32);
  468. SET_HANDLER(UPB_TYPE_UINT32, uint32);
  469. SET_HANDLER(UPB_TYPE_ENUM, int32);
  470. SET_HANDLER(UPB_TYPE_FLOAT, float);
  471. SET_HANDLER(UPB_TYPE_INT64, int64);
  472. SET_HANDLER(UPB_TYPE_UINT64, uint64);
  473. SET_HANDLER(UPB_TYPE_DOUBLE, double);
  474. #undef SET_HANDLER
  475. case UPB_TYPE_STRING:
  476. case UPB_TYPE_BYTES: {
  477. bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
  478. upb_handlers_setstartstr(h, f, is_bytes ?
  479. appendbytes_handler : appendstr_handler,
  480. NULL);
  481. upb_handlers_setstring(h, f, stringdata_handler, NULL);
  482. upb_handlers_setendstr(h, f, appendstring_end_handler, NULL);
  483. break;
  484. }
  485. case UPB_TYPE_MESSAGE: {
  486. VALUE subklass = field_type_class(desc->layout, f);
  487. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  488. attr.handler_data = newsubmsghandlerdata(h, 0, -1, subklass);
  489. if (is_wrapper(upb_fielddef_msgsubdef(f))) {
  490. upb_handlers_setstartsubmsg(h, f, appendwrapper_handler, &attr);
  491. } else {
  492. upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr);
  493. }
  494. break;
  495. }
  496. }
  497. }
  498. static bool doublewrapper_handler(void* closure, const void* hd, double val) {
  499. VALUE* rbval = closure;
  500. *rbval = DBL2NUM(val);
  501. return true;
  502. }
  503. static bool floatwrapper_handler(void* closure, const void* hd, float val) {
  504. VALUE* rbval = closure;
  505. *rbval = DBL2NUM(val);
  506. return true;
  507. }
  508. static bool int64wrapper_handler(void* closure, const void* hd, int64_t val) {
  509. VALUE* rbval = closure;
  510. *rbval = LL2NUM(val);
  511. return true;
  512. }
  513. static bool uint64wrapper_handler(void* closure, const void* hd, uint64_t val) {
  514. VALUE* rbval = closure;
  515. *rbval = ULL2NUM(val);
  516. return true;
  517. }
  518. static bool int32wrapper_handler(void* closure, const void* hd, int32_t val) {
  519. VALUE* rbval = closure;
  520. *rbval = INT2NUM(val);
  521. return true;
  522. }
  523. static bool uint32wrapper_handler(void* closure, const void* hd, uint32_t val) {
  524. VALUE* rbval = closure;
  525. *rbval = UINT2NUM(val);
  526. return true;
  527. }
  528. static size_t stringwrapper_handler(void* closure, const void* hd,
  529. const char* ptr, size_t len,
  530. const upb_bufhandle* handle) {
  531. VALUE* rbval = closure;
  532. *rbval = get_frozen_string(ptr, len, false);
  533. return len;
  534. }
  535. static size_t byteswrapper_handler(void* closure, const void* hd,
  536. const char* ptr, size_t len,
  537. const upb_bufhandle* handle) {
  538. VALUE* rbval = closure;
  539. *rbval = get_frozen_string(ptr, len, true);
  540. return len;
  541. }
  542. static bool boolwrapper_handler(void* closure, const void* hd, bool val) {
  543. VALUE* rbval = closure;
  544. if (val) {
  545. *rbval = Qtrue;
  546. } else {
  547. *rbval = Qfalse;
  548. }
  549. return true;
  550. }
  551. // Set up handlers for a singular field.
  552. static void add_handlers_for_singular_field(const Descriptor* desc,
  553. upb_handlers* h,
  554. const upb_fielddef* f,
  555. size_t offset, size_t hasbit_off) {
  556. // The offset we pass to UPB points to the start of the Message,
  557. // rather than the start of where our data is stored.
  558. int32_t hasbit = -1;
  559. if (hasbit_off != MESSAGE_FIELD_NO_HASBIT) {
  560. hasbit = hasbit_off + sizeof(MessageHeader) * 8;
  561. }
  562. switch (upb_fielddef_type(f)) {
  563. case UPB_TYPE_BOOL:
  564. case UPB_TYPE_INT32:
  565. case UPB_TYPE_UINT32:
  566. case UPB_TYPE_ENUM:
  567. case UPB_TYPE_FLOAT:
  568. case UPB_TYPE_INT64:
  569. case UPB_TYPE_UINT64:
  570. case UPB_TYPE_DOUBLE:
  571. upb_msg_setscalarhandler(h, f, offset, hasbit);
  572. break;
  573. case UPB_TYPE_STRING:
  574. case UPB_TYPE_BYTES: {
  575. bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
  576. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  577. attr.handler_data = newhandlerdata(h, offset, hasbit);
  578. upb_handlers_setstartstr(h, f,
  579. is_bytes ? bytes_handler : str_handler,
  580. &attr);
  581. upb_handlers_setstring(h, f, stringdata_handler, &attr);
  582. upb_handlers_setendstr(h, f, stringdata_end_handler, &attr);
  583. break;
  584. }
  585. case UPB_TYPE_MESSAGE: {
  586. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  587. attr.handler_data = newsubmsghandlerdata(
  588. h, offset, hasbit, field_type_class(desc->layout, f));
  589. if (is_wrapper(upb_fielddef_msgsubdef(f))) {
  590. upb_handlers_setstartsubmsg(h, f, startwrapper, &attr);
  591. } else {
  592. upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr);
  593. }
  594. }
  595. }
  596. }
  597. // Adds handlers to a map field.
  598. static void add_handlers_for_mapfield(upb_handlers* h,
  599. const upb_fielddef* fielddef,
  600. size_t offset,
  601. const Descriptor* desc) {
  602. const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef);
  603. map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc);
  604. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  605. upb_handlers_addcleanup(h, hd, xfree);
  606. attr.handler_data = hd;
  607. upb_handlers_setstartsubmsg(h, fielddef, startmap_handler, &attr);
  608. upb_handlers_setendsubmsg(h, fielddef, endmap_handler, &attr);
  609. }
  610. // Adds handlers to a map-entry msgdef.
  611. static void add_handlers_for_mapentry(const upb_msgdef* msgdef, upb_handlers* h,
  612. const Descriptor* desc) {
  613. const upb_fielddef* key_field = map_entry_key(msgdef);
  614. const upb_fielddef* value_field = map_entry_value(msgdef);
  615. map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc);
  616. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  617. upb_handlers_addcleanup(h, hd, xfree);
  618. attr.handler_data = hd;
  619. upb_handlers_setendmsg(h, endmapentry_handler, &attr);
  620. add_handlers_for_singular_field(
  621. desc, h, key_field,
  622. offsetof(map_parse_frame_t, key_storage),
  623. MESSAGE_FIELD_NO_HASBIT);
  624. add_handlers_for_singular_field(
  625. desc, h, value_field,
  626. offsetof(map_parse_frame_t, value_storage),
  627. MESSAGE_FIELD_NO_HASBIT);
  628. }
  629. static void add_handlers_for_wrapper(const upb_msgdef* msgdef,
  630. upb_handlers* h) {
  631. const upb_fielddef* f = upb_msgdef_itof(msgdef, 1);
  632. switch (upb_msgdef_wellknowntype(msgdef)) {
  633. case UPB_WELLKNOWN_DOUBLEVALUE:
  634. upb_handlers_setdouble(h, f, doublewrapper_handler, NULL);
  635. break;
  636. case UPB_WELLKNOWN_FLOATVALUE:
  637. upb_handlers_setfloat(h, f, floatwrapper_handler, NULL);
  638. break;
  639. case UPB_WELLKNOWN_INT64VALUE:
  640. upb_handlers_setint64(h, f, int64wrapper_handler, NULL);
  641. break;
  642. case UPB_WELLKNOWN_UINT64VALUE:
  643. upb_handlers_setuint64(h, f, uint64wrapper_handler, NULL);
  644. break;
  645. case UPB_WELLKNOWN_INT32VALUE:
  646. upb_handlers_setint32(h, f, int32wrapper_handler, NULL);
  647. break;
  648. case UPB_WELLKNOWN_UINT32VALUE:
  649. upb_handlers_setuint32(h, f, uint32wrapper_handler, NULL);
  650. break;
  651. case UPB_WELLKNOWN_STRINGVALUE:
  652. upb_handlers_setstring(h, f, stringwrapper_handler, NULL);
  653. break;
  654. case UPB_WELLKNOWN_BYTESVALUE:
  655. upb_handlers_setstring(h, f, byteswrapper_handler, NULL);
  656. break;
  657. case UPB_WELLKNOWN_BOOLVALUE:
  658. upb_handlers_setbool(h, f, boolwrapper_handler, NULL);
  659. return;
  660. default:
  661. rb_raise(rb_eRuntimeError,
  662. "Internal logic error with well-known types.");
  663. }
  664. }
  665. // Set up handlers for a oneof field.
  666. static void add_handlers_for_oneof_field(upb_handlers *h,
  667. const upb_fielddef *f,
  668. size_t offset,
  669. size_t oneof_case_offset,
  670. const Descriptor* desc) {
  671. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  672. attr.handler_data =
  673. newoneofhandlerdata(h, offset, oneof_case_offset, f, desc);
  674. switch (upb_fielddef_type(f)) {
  675. #define SET_HANDLER(utype, ltype) \
  676. case utype: \
  677. upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \
  678. break;
  679. SET_HANDLER(UPB_TYPE_BOOL, bool);
  680. SET_HANDLER(UPB_TYPE_INT32, int32);
  681. SET_HANDLER(UPB_TYPE_UINT32, uint32);
  682. SET_HANDLER(UPB_TYPE_ENUM, int32);
  683. SET_HANDLER(UPB_TYPE_FLOAT, float);
  684. SET_HANDLER(UPB_TYPE_INT64, int64);
  685. SET_HANDLER(UPB_TYPE_UINT64, uint64);
  686. SET_HANDLER(UPB_TYPE_DOUBLE, double);
  687. #undef SET_HANDLER
  688. case UPB_TYPE_STRING:
  689. case UPB_TYPE_BYTES: {
  690. bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
  691. upb_handlers_setstartstr(h, f, is_bytes ?
  692. oneofbytes_handler : oneofstr_handler,
  693. &attr);
  694. upb_handlers_setstring(h, f, stringdata_handler, NULL);
  695. upb_handlers_setendstr(h, f, oneofstring_end_handler, &attr);
  696. break;
  697. }
  698. case UPB_TYPE_MESSAGE: {
  699. upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr);
  700. break;
  701. }
  702. }
  703. }
  704. static bool unknown_field_handler(void* closure, const void* hd,
  705. const char* buf, size_t size) {
  706. MessageHeader* msg = (MessageHeader*)closure;
  707. UPB_UNUSED(hd);
  708. if (msg->unknown_fields == NULL) {
  709. msg->unknown_fields = malloc(sizeof(stringsink));
  710. stringsink_init(msg->unknown_fields);
  711. }
  712. stringsink_string(msg->unknown_fields, NULL, buf, size, NULL);
  713. return true;
  714. }
  715. size_t get_field_offset(MessageLayout* layout, const upb_fielddef* f) {
  716. return layout->fields[upb_fielddef_index(f)].offset + sizeof(MessageHeader);
  717. }
  718. void add_handlers_for_message(const void *closure, upb_handlers *h) {
  719. const VALUE descriptor_pool = (VALUE)closure;
  720. const upb_msgdef* msgdef = upb_handlers_msgdef(h);
  721. Descriptor* desc =
  722. ruby_to_Descriptor(get_msgdef_obj(descriptor_pool, msgdef));
  723. upb_msg_field_iter i;
  724. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  725. // Ensure layout exists. We may be invoked to create handlers for a given
  726. // message if we are included as a submsg of another message type before our
  727. // class is actually built, so to work around this, we just create the layout
  728. // (and handlers, in the class-building function) on-demand.
  729. if (desc->layout == NULL) {
  730. create_layout(desc);
  731. }
  732. // If this is a mapentry message type, set up a special set of handlers and
  733. // bail out of the normal (user-defined) message type handling.
  734. if (upb_msgdef_mapentry(msgdef)) {
  735. add_handlers_for_mapentry(msgdef, h, desc);
  736. return;
  737. }
  738. // If this is a wrapper type, use special handlers and bail.
  739. if (is_wrapper(msgdef)) {
  740. add_handlers_for_wrapper(msgdef, h);
  741. return;
  742. }
  743. upb_handlers_setunknown(h, unknown_field_handler, &attr);
  744. for (upb_msg_field_begin(&i, desc->msgdef);
  745. !upb_msg_field_done(&i);
  746. upb_msg_field_next(&i)) {
  747. const upb_fielddef *f = upb_msg_iter_field(&i);
  748. const upb_oneofdef *oneof = upb_fielddef_containingoneof(f);
  749. size_t offset = get_field_offset(desc->layout, f);
  750. if (oneof) {
  751. size_t oneof_case_offset =
  752. desc->layout->oneofs[upb_oneofdef_index(oneof)].case_offset +
  753. sizeof(MessageHeader);
  754. add_handlers_for_oneof_field(h, f, offset, oneof_case_offset, desc);
  755. } else if (is_map_field(f)) {
  756. add_handlers_for_mapfield(h, f, offset, desc);
  757. } else if (upb_fielddef_isseq(f)) {
  758. add_handlers_for_repeated_field(h, desc, f, offset);
  759. } else {
  760. add_handlers_for_singular_field(
  761. desc, h, f, offset,
  762. desc->layout->fields[upb_fielddef_index(f)].hasbit);
  763. }
  764. }
  765. }
  766. // Constructs the handlers for filling a message's data into an in-memory
  767. // object.
  768. const upb_handlers* get_fill_handlers(Descriptor* desc) {
  769. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  770. return upb_handlercache_get(pool->fill_handler_cache, desc->msgdef);
  771. }
  772. static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) {
  773. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  774. return upb_pbcodecache_get(pool->fill_method_cache, desc->msgdef);
  775. }
  776. static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) {
  777. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  778. return upb_json_codecache_get(pool->json_fill_method_cache, desc->msgdef);
  779. }
  780. static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) {
  781. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  782. return upb_handlercache_get(pool->pb_serialize_handler_cache, desc->msgdef);
  783. }
  784. static const upb_handlers* msgdef_json_serialize_handlers(
  785. Descriptor* desc, bool preserve_proto_fieldnames) {
  786. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  787. if (preserve_proto_fieldnames) {
  788. return upb_handlercache_get(pool->json_serialize_handler_preserve_cache,
  789. desc->msgdef);
  790. } else {
  791. return upb_handlercache_get(pool->json_serialize_handler_cache,
  792. desc->msgdef);
  793. }
  794. }
  795. // Stack-allocated context during an encode/decode operation. Contains the upb
  796. // environment and its stack-based allocator, an initial buffer for allocations
  797. // to avoid malloc() when possible, and a template for Ruby exception messages
  798. // if any error occurs.
  799. #define STACK_ENV_STACKBYTES 4096
  800. typedef struct {
  801. upb_arena *arena;
  802. upb_status status;
  803. const char* ruby_error_template;
  804. char allocbuf[STACK_ENV_STACKBYTES];
  805. } stackenv;
  806. static void stackenv_init(stackenv* se, const char* errmsg);
  807. static void stackenv_uninit(stackenv* se);
  808. static void stackenv_init(stackenv* se, const char* errmsg) {
  809. se->ruby_error_template = errmsg;
  810. se->arena =
  811. upb_arena_init(se->allocbuf, sizeof(se->allocbuf), &upb_alloc_global);
  812. upb_status_clear(&se->status);
  813. }
  814. static void stackenv_uninit(stackenv* se) {
  815. upb_arena_free(se->arena);
  816. if (!upb_ok(&se->status)) {
  817. // TODO(haberman): have a way to verify that this is actually a parse error,
  818. // instead of just throwing "parse error" unconditionally.
  819. VALUE errmsg = rb_str_new2(upb_status_errmsg(&se->status));
  820. rb_raise(cParseError, se->ruby_error_template, errmsg);
  821. }
  822. }
  823. /*
  824. * call-seq:
  825. * MessageClass.decode(data) => message
  826. *
  827. * Decodes the given data (as a string containing bytes in protocol buffers wire
  828. * format) under the interpretration given by this message class's definition
  829. * and returns a message object with the corresponding field values.
  830. */
  831. VALUE Message_decode(VALUE klass, VALUE data) {
  832. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  833. Descriptor* desc = ruby_to_Descriptor(descriptor);
  834. VALUE msgklass = Descriptor_msgclass(descriptor);
  835. VALUE msg_rb;
  836. MessageHeader* msg;
  837. if (TYPE(data) != T_STRING) {
  838. rb_raise(rb_eArgError, "Expected string for binary protobuf data.");
  839. }
  840. msg_rb = rb_class_new_instance(0, NULL, msgklass);
  841. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  842. {
  843. const upb_pbdecodermethod* method = msgdef_decodermethod(desc);
  844. const upb_handlers* h = upb_pbdecodermethod_desthandlers(method);
  845. const upb_msgdef* m = upb_handlers_msgdef(h);
  846. VALUE wrapper = Qnil;
  847. void* ptr = msg;
  848. stackenv se;
  849. upb_sink sink;
  850. upb_pbdecoder* decoder;
  851. stackenv_init(&se, "Error occurred during parsing: %" PRIsVALUE);
  852. if (is_wrapper(m)) {
  853. ptr = &wrapper;
  854. }
  855. upb_sink_reset(&sink, h, ptr);
  856. decoder = upb_pbdecoder_create(se.arena, method, sink, &se.status);
  857. upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
  858. upb_pbdecoder_input(decoder));
  859. stackenv_uninit(&se);
  860. if (is_wrapper(m)) {
  861. msg_rb = ruby_wrapper_type(msgklass, wrapper);
  862. }
  863. }
  864. return msg_rb;
  865. }
  866. /*
  867. * call-seq:
  868. * MessageClass.decode_json(data, options = {}) => message
  869. *
  870. * Decodes the given data (as a string containing bytes in protocol buffers wire
  871. * format) under the interpretration given by this message class's definition
  872. * and returns a message object with the corresponding field values.
  873. *
  874. * @param options [Hash] options for the decoder
  875. * ignore_unknown_fields: set true to ignore unknown fields (default is to
  876. * raise an error)
  877. */
  878. VALUE Message_decode_json(int argc, VALUE* argv, VALUE klass) {
  879. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  880. Descriptor* desc = ruby_to_Descriptor(descriptor);
  881. VALUE msgklass = Descriptor_msgclass(descriptor);
  882. VALUE msg_rb;
  883. VALUE data = argv[0];
  884. VALUE ignore_unknown_fields = Qfalse;
  885. MessageHeader* msg;
  886. if (argc < 1 || argc > 2) {
  887. rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
  888. }
  889. if (argc == 2) {
  890. VALUE hash_args = argv[1];
  891. if (TYPE(hash_args) != T_HASH) {
  892. rb_raise(rb_eArgError, "Expected hash arguments.");
  893. }
  894. ignore_unknown_fields = rb_hash_lookup2(
  895. hash_args, ID2SYM(rb_intern("ignore_unknown_fields")), Qfalse);
  896. }
  897. if (TYPE(data) != T_STRING) {
  898. rb_raise(rb_eArgError, "Expected string for JSON data.");
  899. }
  900. // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to
  901. // convert, because string handlers pass data directly to message string
  902. // fields.
  903. msg_rb = rb_class_new_instance(0, NULL, msgklass);
  904. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  905. {
  906. const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc);
  907. const upb_handlers* h = get_fill_handlers(desc);
  908. const upb_msgdef* m = upb_handlers_msgdef(h);
  909. stackenv se;
  910. upb_sink sink;
  911. upb_json_parser* parser;
  912. DescriptorPool* pool = ruby_to_DescriptorPool(generated_pool);
  913. stackenv_init(&se, "Error occurred during parsing: %" PRIsVALUE);
  914. if (is_wrapper(m)) {
  915. rb_raise(
  916. rb_eRuntimeError,
  917. "Parsing a wrapper type from JSON at the top level does not work.");
  918. }
  919. upb_sink_reset(&sink, h, msg);
  920. parser = upb_json_parser_create(se.arena, method, pool->symtab, sink,
  921. &se.status, RTEST(ignore_unknown_fields));
  922. upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
  923. upb_json_parser_input(parser));
  924. stackenv_uninit(&se);
  925. }
  926. return msg_rb;
  927. }
  928. // -----------------------------------------------------------------------------
  929. // Serializing.
  930. // -----------------------------------------------------------------------------
  931. /* msgvisitor *****************************************************************/
  932. static void putmsg(VALUE msg, const Descriptor* desc, upb_sink sink, int depth,
  933. bool emit_defaults, bool is_json, bool open_msg);
  934. static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
  935. upb_selector_t ret;
  936. bool ok = upb_handlers_getselector(f, type, &ret);
  937. UPB_ASSERT(ok);
  938. return ret;
  939. }
  940. static void putstr(VALUE str, const upb_fielddef *f, upb_sink sink) {
  941. upb_sink subsink;
  942. if (str == Qnil) return;
  943. assert(BUILTIN_TYPE(str) == RUBY_T_STRING);
  944. // We should be guaranteed that the string has the correct encoding because
  945. // we ensured this at assignment time and then froze the string.
  946. if (upb_fielddef_type(f) == UPB_TYPE_STRING) {
  947. assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyStringUtf8Encoding);
  948. } else {
  949. assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyString8bitEncoding);
  950. }
  951. upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str),
  952. &subsink);
  953. upb_sink_putstring(subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str),
  954. RSTRING_LEN(str), NULL);
  955. upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));
  956. }
  957. static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink sink,
  958. int depth, bool emit_defaults, bool is_json) {
  959. upb_sink subsink;
  960. VALUE descriptor;
  961. Descriptor* subdesc;
  962. if (submsg == Qnil) return;
  963. descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  964. subdesc = ruby_to_Descriptor(descriptor);
  965. upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink);
  966. putmsg(submsg, subdesc, subsink, depth + 1, emit_defaults, is_json, true);
  967. upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG));
  968. }
  969. static void putary(VALUE ary, const upb_fielddef* f, upb_sink sink, int depth,
  970. bool emit_defaults, bool is_json) {
  971. upb_sink subsink;
  972. upb_fieldtype_t type = upb_fielddef_type(f);
  973. upb_selector_t sel = 0;
  974. int size;
  975. int i;
  976. VALUE type_class = ruby_to_RepeatedField(ary)->field_type_class;
  977. if (ary == Qnil) return;
  978. if (!emit_defaults && NUM2INT(RepeatedField_length(ary)) == 0) return;
  979. size = NUM2INT(RepeatedField_length(ary));
  980. if (size == 0 && !emit_defaults) return;
  981. upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
  982. if (upb_fielddef_isprimitive(f)) {
  983. sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  984. }
  985. for (i = 0; i < size; i++) {
  986. void* memory = RepeatedField_index_native(ary, i);
  987. switch (type) {
  988. #define T(upbtypeconst, upbtype, ctype) \
  989. case upbtypeconst: \
  990. upb_sink_put##upbtype(subsink, sel, *((ctype*)memory)); \
  991. break;
  992. T(UPB_TYPE_FLOAT, float, float)
  993. T(UPB_TYPE_DOUBLE, double, double)
  994. T(UPB_TYPE_BOOL, bool, int8_t)
  995. case UPB_TYPE_ENUM:
  996. T(UPB_TYPE_INT32, int32, int32_t)
  997. T(UPB_TYPE_UINT32, uint32, uint32_t)
  998. T(UPB_TYPE_INT64, int64, int64_t)
  999. T(UPB_TYPE_UINT64, uint64, uint64_t)
  1000. case UPB_TYPE_STRING:
  1001. case UPB_TYPE_BYTES:
  1002. putstr(*((VALUE *)memory), f, subsink);
  1003. break;
  1004. case UPB_TYPE_MESSAGE: {
  1005. VALUE val = native_slot_get(UPB_TYPE_MESSAGE, type_class, memory);
  1006. putsubmsg(val, f, subsink, depth, emit_defaults, is_json);
  1007. break;
  1008. }
  1009. #undef T
  1010. }
  1011. }
  1012. upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
  1013. }
  1014. static void put_ruby_value(VALUE value, const upb_fielddef* f, VALUE type_class,
  1015. int depth, upb_sink sink, bool emit_defaults,
  1016. bool is_json) {
  1017. upb_selector_t sel = 0;
  1018. if (depth > ENCODE_MAX_NESTING) {
  1019. rb_raise(rb_eRuntimeError,
  1020. "Maximum recursion depth exceeded during encoding.");
  1021. }
  1022. if (upb_fielddef_isprimitive(f)) {
  1023. sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  1024. }
  1025. switch (upb_fielddef_type(f)) {
  1026. case UPB_TYPE_INT32:
  1027. upb_sink_putint32(sink, sel, NUM2INT(value));
  1028. break;
  1029. case UPB_TYPE_INT64:
  1030. upb_sink_putint64(sink, sel, NUM2LL(value));
  1031. break;
  1032. case UPB_TYPE_UINT32:
  1033. upb_sink_putuint32(sink, sel, NUM2UINT(value));
  1034. break;
  1035. case UPB_TYPE_UINT64:
  1036. upb_sink_putuint64(sink, sel, NUM2ULL(value));
  1037. break;
  1038. case UPB_TYPE_FLOAT:
  1039. upb_sink_putfloat(sink, sel, NUM2DBL(value));
  1040. break;
  1041. case UPB_TYPE_DOUBLE:
  1042. upb_sink_putdouble(sink, sel, NUM2DBL(value));
  1043. break;
  1044. case UPB_TYPE_ENUM: {
  1045. if (TYPE(value) == T_SYMBOL) {
  1046. value = rb_funcall(type_class, rb_intern("resolve"), 1, value);
  1047. }
  1048. upb_sink_putint32(sink, sel, NUM2INT(value));
  1049. break;
  1050. }
  1051. case UPB_TYPE_BOOL:
  1052. upb_sink_putbool(sink, sel, value == Qtrue);
  1053. break;
  1054. case UPB_TYPE_STRING:
  1055. case UPB_TYPE_BYTES:
  1056. putstr(value, f, sink);
  1057. break;
  1058. case UPB_TYPE_MESSAGE:
  1059. putsubmsg(value, f, sink, depth, emit_defaults, is_json);
  1060. }
  1061. }
  1062. static void putmap(VALUE map, const upb_fielddef* f, upb_sink sink, int depth,
  1063. bool emit_defaults, bool is_json) {
  1064. Map* self;
  1065. upb_sink subsink;
  1066. const upb_fielddef* key_field;
  1067. const upb_fielddef* value_field;
  1068. Map_iter it;
  1069. if (map == Qnil) return;
  1070. if (!emit_defaults && Map_length(map) == 0) return;
  1071. self = ruby_to_Map(map);
  1072. upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
  1073. assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE);
  1074. key_field = map_field_key(f);
  1075. value_field = map_field_value(f);
  1076. for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) {
  1077. VALUE key = Map_iter_key(&it);
  1078. VALUE value = Map_iter_value(&it);
  1079. upb_status status;
  1080. upb_sink entry_sink;
  1081. upb_sink_startsubmsg(subsink, getsel(f, UPB_HANDLER_STARTSUBMSG),
  1082. &entry_sink);
  1083. upb_sink_startmsg(entry_sink);
  1084. put_ruby_value(key, key_field, Qnil, depth + 1, entry_sink, emit_defaults,
  1085. is_json);
  1086. put_ruby_value(value, value_field, self->value_type_class, depth + 1,
  1087. entry_sink, emit_defaults, is_json);
  1088. upb_sink_endmsg(entry_sink, &status);
  1089. upb_sink_endsubmsg(subsink, getsel(f, UPB_HANDLER_ENDSUBMSG));
  1090. }
  1091. upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
  1092. }
  1093. static const upb_handlers* msgdef_json_serialize_handlers(
  1094. Descriptor* desc, bool preserve_proto_fieldnames);
  1095. static void putjsonany(VALUE msg_rb, const Descriptor* desc, upb_sink sink,
  1096. int depth, bool emit_defaults) {
  1097. upb_status status;
  1098. MessageHeader* msg = NULL;
  1099. const upb_fielddef* type_field = upb_msgdef_itof(desc->msgdef, UPB_ANY_TYPE);
  1100. const upb_fielddef* value_field = upb_msgdef_itof(desc->msgdef, UPB_ANY_VALUE);
  1101. size_t type_url_offset;
  1102. VALUE type_url_str_rb;
  1103. const upb_msgdef *payload_type = NULL;
  1104. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  1105. upb_sink_startmsg(sink);
  1106. /* Handle type url */
  1107. type_url_offset = desc->layout->fields[upb_fielddef_index(type_field)].offset;
  1108. type_url_str_rb = DEREF(Message_data(msg), type_url_offset, VALUE);
  1109. if (RSTRING_LEN(type_url_str_rb) > 0) {
  1110. putstr(type_url_str_rb, type_field, sink);
  1111. }
  1112. {
  1113. const char* type_url_str = RSTRING_PTR(type_url_str_rb);
  1114. size_t type_url_len = RSTRING_LEN(type_url_str_rb);
  1115. DescriptorPool* pool = ruby_to_DescriptorPool(generated_pool);
  1116. if (type_url_len <= 20 ||
  1117. strncmp(type_url_str, "type.googleapis.com/", 20) != 0) {
  1118. rb_raise(rb_eRuntimeError, "Invalid type url: %s", type_url_str);
  1119. return;
  1120. }
  1121. /* Resolve type url */
  1122. type_url_str += 20;
  1123. type_url_len -= 20;
  1124. payload_type = upb_symtab_lookupmsg2(
  1125. pool->symtab, type_url_str, type_url_len);
  1126. if (payload_type == NULL) {
  1127. rb_raise(rb_eRuntimeError, "Unknown type: %s", type_url_str);
  1128. return;
  1129. }
  1130. }
  1131. {
  1132. uint32_t value_offset;
  1133. VALUE value_str_rb;
  1134. size_t value_len;
  1135. value_offset = desc->layout->fields[upb_fielddef_index(value_field)].offset;
  1136. value_str_rb = DEREF(Message_data(msg), value_offset, VALUE);
  1137. value_len = RSTRING_LEN(value_str_rb);
  1138. if (value_len > 0) {
  1139. VALUE payload_desc_rb = get_msgdef_obj(generated_pool, payload_type);
  1140. Descriptor* payload_desc = ruby_to_Descriptor(payload_desc_rb);
  1141. VALUE payload_class = Descriptor_msgclass(payload_desc_rb);
  1142. upb_sink subsink;
  1143. bool is_wellknown;
  1144. VALUE payload_msg_rb = Message_decode(payload_class, value_str_rb);
  1145. is_wellknown =
  1146. upb_msgdef_wellknowntype(payload_desc->msgdef) !=
  1147. UPB_WELLKNOWN_UNSPECIFIED;
  1148. if (is_wellknown) {
  1149. upb_sink_startstr(sink, getsel(value_field, UPB_HANDLER_STARTSTR), 0,
  1150. &subsink);
  1151. }
  1152. subsink.handlers =
  1153. msgdef_json_serialize_handlers(payload_desc, true);
  1154. subsink.closure = sink.closure;
  1155. putmsg(payload_msg_rb, payload_desc, subsink, depth, emit_defaults, true,
  1156. is_wellknown);
  1157. }
  1158. }
  1159. upb_sink_endmsg(sink, &status);
  1160. }
  1161. static void putjsonlistvalue(
  1162. VALUE msg_rb, const Descriptor* desc,
  1163. upb_sink sink, int depth, bool emit_defaults) {
  1164. upb_status status;
  1165. upb_sink subsink;
  1166. MessageHeader* msg = NULL;
  1167. const upb_fielddef* f = upb_msgdef_itof(desc->msgdef, 1);
  1168. uint32_t offset =
  1169. desc->layout->fields[upb_fielddef_index(f)].offset +
  1170. sizeof(MessageHeader);
  1171. VALUE ary;
  1172. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  1173. upb_sink_startmsg(sink);
  1174. ary = DEREF(msg, offset, VALUE);
  1175. if (ary == Qnil || RepeatedField_size(ary) == 0) {
  1176. upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
  1177. upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
  1178. } else {
  1179. putary(ary, f, sink, depth, emit_defaults, true);
  1180. }
  1181. upb_sink_endmsg(sink, &status);
  1182. }
  1183. static void putmsg(VALUE msg_rb, const Descriptor* desc,
  1184. upb_sink sink, int depth, bool emit_defaults,
  1185. bool is_json, bool open_msg) {
  1186. MessageHeader* msg;
  1187. upb_msg_field_iter i;
  1188. upb_status status;
  1189. if (is_json &&
  1190. upb_msgdef_wellknowntype(desc->msgdef) == UPB_WELLKNOWN_ANY) {
  1191. putjsonany(msg_rb, desc, sink, depth, emit_defaults);
  1192. return;
  1193. }
  1194. if (is_json &&
  1195. upb_msgdef_wellknowntype(desc->msgdef) == UPB_WELLKNOWN_LISTVALUE) {
  1196. putjsonlistvalue(msg_rb, desc, sink, depth, emit_defaults);
  1197. return;
  1198. }
  1199. if (open_msg) {
  1200. upb_sink_startmsg(sink);
  1201. }
  1202. // Protect against cycles (possible because users may freely reassign message
  1203. // and repeated fields) by imposing a maximum recursion depth.
  1204. if (depth > ENCODE_MAX_NESTING) {
  1205. rb_raise(rb_eRuntimeError,
  1206. "Maximum recursion depth exceeded during encoding.");
  1207. }
  1208. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  1209. if (desc != msg->descriptor) {
  1210. rb_raise(rb_eArgError,
  1211. "The type of given msg is '%s', expect '%s'.",
  1212. upb_msgdef_fullname(msg->descriptor->msgdef),
  1213. upb_msgdef_fullname(desc->msgdef));
  1214. }
  1215. for (upb_msg_field_begin(&i, desc->msgdef);
  1216. !upb_msg_field_done(&i);
  1217. upb_msg_field_next(&i)) {
  1218. upb_fielddef *f = upb_msg_iter_field(&i);
  1219. const upb_oneofdef *oneof = upb_fielddef_containingoneof(f);
  1220. bool is_matching_oneof = false;
  1221. uint32_t offset =
  1222. desc->layout->fields[upb_fielddef_index(f)].offset +
  1223. sizeof(MessageHeader);
  1224. if (oneof) {
  1225. uint32_t oneof_case =
  1226. slot_read_oneof_case(desc->layout, Message_data(msg), oneof);
  1227. // For a oneof, check that this field is actually present -- skip all the
  1228. // below if not.
  1229. if (oneof_case != upb_fielddef_number(f)) {
  1230. continue;
  1231. }
  1232. // Otherwise, fall through to the appropriate singular-field handler
  1233. // below.
  1234. is_matching_oneof = true;
  1235. }
  1236. if (is_map_field(f)) {
  1237. VALUE map = DEREF(msg, offset, VALUE);
  1238. if (map != Qnil || emit_defaults) {
  1239. putmap(map, f, sink, depth, emit_defaults, is_json);
  1240. }
  1241. } else if (upb_fielddef_isseq(f)) {
  1242. VALUE ary = DEREF(msg, offset, VALUE);
  1243. if (ary != Qnil) {
  1244. putary(ary, f, sink, depth, emit_defaults, is_json);
  1245. }
  1246. } else if (upb_fielddef_isstring(f)) {
  1247. VALUE str = DEREF(msg, offset, VALUE);
  1248. bool is_default = false;
  1249. if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO2) {
  1250. is_default = layout_has(desc->layout, Message_data(msg), f) == Qfalse;
  1251. } else if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO3) {
  1252. is_default = RSTRING_LEN(str) == 0;
  1253. }
  1254. if (is_matching_oneof || emit_defaults || !is_default) {
  1255. putstr(str, f, sink);
  1256. }
  1257. } else if (upb_fielddef_issubmsg(f)) {
  1258. // OPT: could try to avoid the layout_get() (which will expand lazy
  1259. // wrappers).
  1260. VALUE val = layout_get(desc->layout, Message_data(msg), f);
  1261. putsubmsg(val, f, sink, depth, emit_defaults, is_json);
  1262. } else {
  1263. upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  1264. #define T(upbtypeconst, upbtype, ctype, default_value) \
  1265. case upbtypeconst: { \
  1266. ctype value = DEREF(msg, offset, ctype); \
  1267. bool is_default = false; \
  1268. if (upb_fielddef_haspresence(f)) { \
  1269. is_default = layout_has(desc->layout, Message_data(msg), f) == Qfalse; \
  1270. } else if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO3) { \
  1271. is_default = default_value == value; \
  1272. } \
  1273. if (is_matching_oneof || emit_defaults || !is_default) { \
  1274. upb_sink_put##upbtype(sink, sel, value); \
  1275. } \
  1276. } break;
  1277. switch (upb_fielddef_type(f)) {
  1278. T(UPB_TYPE_FLOAT, float, float, 0.0)
  1279. T(UPB_TYPE_DOUBLE, double, double, 0.0)
  1280. T(UPB_TYPE_BOOL, bool, uint8_t, 0)
  1281. case UPB_TYPE_ENUM:
  1282. T(UPB_TYPE_INT32, int32, int32_t, 0)
  1283. T(UPB_TYPE_UINT32, uint32, uint32_t, 0)
  1284. T(UPB_TYPE_INT64, int64, int64_t, 0)
  1285. T(UPB_TYPE_UINT64, uint64, uint64_t, 0)
  1286. case UPB_TYPE_STRING:
  1287. case UPB_TYPE_BYTES:
  1288. case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error.");
  1289. }
  1290. #undef T
  1291. }
  1292. }
  1293. {
  1294. stringsink* unknown = msg->unknown_fields;
  1295. if (unknown != NULL) {
  1296. upb_sink_putunknown(sink, unknown->ptr, unknown->len);
  1297. }
  1298. }
  1299. if (open_msg) {
  1300. upb_sink_endmsg(sink, &status);
  1301. }
  1302. }
  1303. /*
  1304. * call-seq:
  1305. * MessageClass.encode(msg) => bytes
  1306. *
  1307. * Encodes the given message object to its serialized form in protocol buffers
  1308. * wire format.
  1309. */
  1310. VALUE Message_encode(VALUE klass, VALUE msg_rb) {
  1311. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  1312. Descriptor* desc = ruby_to_Descriptor(descriptor);
  1313. stringsink sink;
  1314. stringsink_init(&sink);
  1315. {
  1316. const upb_handlers* serialize_handlers =
  1317. msgdef_pb_serialize_handlers(desc);
  1318. stackenv se;
  1319. upb_pb_encoder* encoder;
  1320. VALUE ret;
  1321. stackenv_init(&se, "Error occurred during encoding: %" PRIsVALUE);
  1322. encoder = upb_pb_encoder_create(se.arena, serialize_handlers, sink.sink);
  1323. putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0, false, false, true);
  1324. ret = rb_str_new(sink.ptr, sink.len);
  1325. stackenv_uninit(&se);
  1326. stringsink_uninit(&sink);
  1327. return ret;
  1328. }
  1329. }
  1330. /*
  1331. * call-seq:
  1332. * MessageClass.encode_json(msg, options = {}) => json_string
  1333. *
  1334. * Encodes the given message object into its serialized JSON representation.
  1335. * @param options [Hash] options for the decoder
  1336. * preserve_proto_fieldnames: set true to use original fieldnames (default is to camelCase)
  1337. * emit_defaults: set true to emit 0/false values (default is to omit them)
  1338. */
  1339. VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) {
  1340. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  1341. Descriptor* desc = ruby_to_Descriptor(descriptor);
  1342. VALUE msg_rb;
  1343. VALUE preserve_proto_fieldnames = Qfalse;
  1344. VALUE emit_defaults = Qfalse;
  1345. stringsink sink;
  1346. if (argc < 1 || argc > 2) {
  1347. rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
  1348. }
  1349. msg_rb = argv[0];
  1350. if (argc == 2) {
  1351. VALUE hash_args = argv[1];
  1352. if (TYPE(hash_args) != T_HASH) {
  1353. rb_raise(rb_eArgError, "Expected hash arguments.");
  1354. }
  1355. preserve_proto_fieldnames = rb_hash_lookup2(
  1356. hash_args, ID2SYM(rb_intern("preserve_proto_fieldnames")), Qfalse);
  1357. emit_defaults = rb_hash_lookup2(
  1358. hash_args, ID2SYM(rb_intern("emit_defaults")), Qfalse);
  1359. }
  1360. stringsink_init(&sink);
  1361. {
  1362. const upb_handlers* serialize_handlers =
  1363. msgdef_json_serialize_handlers(desc, RTEST(preserve_proto_fieldnames));
  1364. upb_json_printer* printer;
  1365. stackenv se;
  1366. VALUE ret;
  1367. stackenv_init(&se, "Error occurred during encoding: %" PRIsVALUE);
  1368. printer = upb_json_printer_create(se.arena, serialize_handlers, sink.sink);
  1369. putmsg(msg_rb, desc, upb_json_printer_input(printer), 0,
  1370. RTEST(emit_defaults), true, true);
  1371. ret = rb_enc_str_new(sink.ptr, sink.len, rb_utf8_encoding());
  1372. stackenv_uninit(&se);
  1373. stringsink_uninit(&sink);
  1374. return ret;
  1375. }
  1376. }
  1377. static void discard_unknown(VALUE msg_rb, const Descriptor* desc) {
  1378. MessageHeader* msg;
  1379. upb_msg_field_iter it;
  1380. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  1381. {
  1382. stringsink* unknown = msg->unknown_fields;
  1383. if (unknown != NULL) {
  1384. stringsink_uninit(unknown);
  1385. msg->unknown_fields = NULL;
  1386. }
  1387. }
  1388. for (upb_msg_field_begin(&it, desc->msgdef);
  1389. !upb_msg_field_done(&it);
  1390. upb_msg_field_next(&it)) {
  1391. upb_fielddef *f = upb_msg_iter_field(&it);
  1392. const upb_oneofdef *oneof = upb_fielddef_containingoneof(f);
  1393. uint32_t offset =
  1394. desc->layout->fields[upb_fielddef_index(f)].offset +
  1395. sizeof(MessageHeader);
  1396. if (oneof) {
  1397. uint32_t oneof_case =
  1398. slot_read_oneof_case(desc->layout, Message_data(msg), oneof);
  1399. // For a oneof, check that this field is actually present -- skip all the
  1400. // below if not.
  1401. if (oneof_case != upb_fielddef_number(f)) {
  1402. continue;
  1403. }
  1404. // Otherwise, fall through to the appropriate singular-field handler
  1405. // below.
  1406. }
  1407. if (!upb_fielddef_issubmsg(f)) {
  1408. continue;
  1409. }
  1410. if (is_map_field(f)) {
  1411. VALUE map;
  1412. Map_iter map_it;
  1413. if (!upb_fielddef_issubmsg(map_field_value(f))) continue;
  1414. map = DEREF(msg, offset, VALUE);
  1415. if (map == Qnil) continue;
  1416. for (Map_begin(map, &map_it); !Map_done(&map_it); Map_next(&map_it)) {
  1417. VALUE submsg = Map_iter_value(&map_it);
  1418. VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  1419. const Descriptor* subdesc = ruby_to_Descriptor(descriptor);
  1420. discard_unknown(submsg, subdesc);
  1421. }
  1422. } else if (upb_fielddef_isseq(f)) {
  1423. VALUE ary = DEREF(msg, offset, VALUE);
  1424. int size;
  1425. int i;
  1426. if (ary == Qnil) continue;
  1427. size = NUM2INT(RepeatedField_length(ary));
  1428. for (i = 0; i < size; i++) {
  1429. void* memory = RepeatedField_index_native(ary, i);
  1430. VALUE submsg = *((VALUE *)memory);
  1431. VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  1432. const Descriptor* subdesc = ruby_to_Descriptor(descriptor);
  1433. discard_unknown(submsg, subdesc);
  1434. }
  1435. } else {
  1436. VALUE submsg = DEREF(msg, offset, VALUE);
  1437. VALUE descriptor;
  1438. const Descriptor* subdesc;
  1439. if (submsg == Qnil) continue;
  1440. descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  1441. subdesc = ruby_to_Descriptor(descriptor);
  1442. discard_unknown(submsg, subdesc);
  1443. }
  1444. }
  1445. }
  1446. /*
  1447. * call-seq:
  1448. * Google::Protobuf.discard_unknown(msg)
  1449. *
  1450. * Discard unknown fields in the given message object and recursively discard
  1451. * unknown fields in submessages.
  1452. */
  1453. VALUE Google_Protobuf_discard_unknown(VALUE self, VALUE msg_rb) {
  1454. VALUE klass = CLASS_OF(msg_rb);
  1455. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  1456. Descriptor* desc = ruby_to_Descriptor(descriptor);
  1457. if (klass == cRepeatedField || klass == cMap) {
  1458. rb_raise(rb_eArgError, "Expected proto msg for discard unknown.");
  1459. } else {
  1460. discard_unknown(msg_rb, desc);
  1461. }
  1462. return Qnil;
  1463. }