| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413 | // Protocol Buffers - Google's data interchange format// Copyright 2008 Google Inc.  All rights reserved.// https://developers.google.com/protocol-buffers///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:////     * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//     * Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.//     * Neither the name of Google Inc. nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE./** * @fileoverview This file contains helper code used by jspb.utils to * handle 64-bit integer conversion to/from strings. * * @author cfallin@google.com (Chris Fallin) * * TODO(haberman): move this to javascript/closure/math? */goog.provide('jspb.arith.Int64');goog.provide('jspb.arith.UInt64');/** * UInt64 implements some 64-bit arithmetic routines necessary for properly * handling 64-bit integer fields. It implements lossless integer arithmetic on * top of JavaScript's number type, which has only 53 bits of precision, by * representing 64-bit integers as two 32-bit halves. * * @param {number} lo The low 32 bits. * @param {number} hi The high 32 bits. * @constructor */jspb.arith.UInt64 = function(lo, hi) {  /**   * The low 32 bits.   * @public {number}   */  this.lo = lo;  /**   * The high 32 bits.   * @public {number}   */  this.hi = hi;};/** * Compare two 64-bit numbers. Returns -1 if the first is * less, +1 if the first is greater, or 0 if both are equal. * @param {!jspb.arith.UInt64} other * @return {number} */jspb.arith.UInt64.prototype.cmp = function(other) {  if (this.hi < other.hi || (this.hi == other.hi && this.lo < other.lo)) {    return -1;  } else if (this.hi == other.hi && this.lo == other.lo) {    return 0;  } else {    return 1;  }};/** * Right-shift this number by one bit. * @return {!jspb.arith.UInt64} */jspb.arith.UInt64.prototype.rightShift = function() {  var hi = this.hi >>> 1;  var lo = (this.lo >>> 1) | ((this.hi & 1) << 31);  return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);};/** * Left-shift this number by one bit. * @return {!jspb.arith.UInt64} */jspb.arith.UInt64.prototype.leftShift = function() {  var lo = this.lo << 1;  var hi = (this.hi << 1) | (this.lo >>> 31);  return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);};/** * Test the MSB. * @return {boolean} */jspb.arith.UInt64.prototype.msb = function() {  return !!(this.hi & 0x80000000);};/** * Test the LSB. * @return {boolean} */jspb.arith.UInt64.prototype.lsb = function() {  return !!(this.lo & 1);};/** * Test whether this number is zero. * @return {boolean} */jspb.arith.UInt64.prototype.zero = function() {  return this.lo == 0 && this.hi == 0;};/** * Add two 64-bit numbers to produce a 64-bit number. * @param {!jspb.arith.UInt64} other * @return {!jspb.arith.UInt64} */jspb.arith.UInt64.prototype.add = function(other) {  var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0;  var hi =      (((this.hi + other.hi) & 0xffffffff) >>> 0) +      (((this.lo + other.lo) >= 0x100000000) ? 1 : 0);  return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);};/** * Subtract two 64-bit numbers to produce a 64-bit number. * @param {!jspb.arith.UInt64} other * @return {!jspb.arith.UInt64} */jspb.arith.UInt64.prototype.sub = function(other) {  var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0;  var hi =      (((this.hi - other.hi) & 0xffffffff) >>> 0) -      (((this.lo - other.lo) < 0) ? 1 : 0);  return new jspb.arith.UInt64(lo >>> 0, hi >>> 0);};/** * Multiply two 32-bit numbers to produce a 64-bit number. * @param {number} a The first integer:  must be in [0, 2^32-1). * @param {number} b The second integer: must be in [0, 2^32-1). * @return {!jspb.arith.UInt64} */jspb.arith.UInt64.mul32x32 = function(a, b) {  // Directly multiplying two 32-bit numbers may produce up to 64 bits of  // precision, thus losing precision because of the 53-bit mantissa of  // JavaScript numbers. So we multiply with 16-bit digits (radix 65536)  // instead.  var aLow = (a & 0xffff);  var aHigh = (a >>> 16);  var bLow = (b & 0xffff);  var bHigh = (b >>> 16);  var productLow =      // 32-bit result, result bits 0-31, take all 32 bits      (aLow * bLow) +      // 32-bit result, result bits 16-47, take bottom 16 as our top 16      ((aLow * bHigh) & 0xffff) * 0x10000 +      // 32-bit result, result bits 16-47, take bottom 16 as our top 16      ((aHigh * bLow) & 0xffff) * 0x10000;  var productHigh =      // 32-bit result, result bits 32-63, take all 32 bits      (aHigh * bHigh) +      // 32-bit result, result bits 16-47, take top 16 as our bottom 16      ((aLow * bHigh) >>> 16) +      // 32-bit result, result bits 16-47, take top 16 as our bottom 16      ((aHigh * bLow) >>> 16);  // Carry. Note that we actually have up to *two* carries due to addition of  // three terms.  while (productLow >= 0x100000000) {    productLow -= 0x100000000;    productHigh += 1;  }  return new jspb.arith.UInt64(productLow >>> 0, productHigh >>> 0);};/** * Multiply this number by a 32-bit number, producing a 96-bit number, then * truncate the top 32 bits. * @param {number} a The multiplier. * @return {!jspb.arith.UInt64} */jspb.arith.UInt64.prototype.mul = function(a) {  // Produce two parts: at bits 0-63, and 32-95.  var lo = jspb.arith.UInt64.mul32x32(this.lo, a);  var hi = jspb.arith.UInt64.mul32x32(this.hi, a);  // Left-shift hi by 32 bits, truncating its top bits. The parts will then be  // aligned for addition.  hi.hi = hi.lo;  hi.lo = 0;  return lo.add(hi);};/** * Divide a 64-bit number by a 32-bit number to produce a * 64-bit quotient and a 32-bit remainder. * @param {number} _divisor * @return {Array.<jspb.arith.UInt64>} array of [quotient, remainder], * unless divisor is 0, in which case an empty array is returned. */jspb.arith.UInt64.prototype.div = function(_divisor) {  if (_divisor == 0) {    return [];  }  // We perform long division using a radix-2 algorithm, for simplicity (i.e.,  // one bit at a time). TODO: optimize to a radix-2^32 algorithm, taking care  // to get the variable shifts right.  var quotient = new jspb.arith.UInt64(0, 0);  var remainder = new jspb.arith.UInt64(this.lo, this.hi);  var divisor = new jspb.arith.UInt64(_divisor, 0);  var unit = new jspb.arith.UInt64(1, 0);  // Left-shift the divisor and unit until the high bit of divisor is set.  while (!divisor.msb()) {    divisor = divisor.leftShift();    unit = unit.leftShift();  }  // Perform long division one bit at a time.  while (!unit.zero()) {    // If divisor < remainder, add unit to quotient and subtract divisor from    // remainder.    if (divisor.cmp(remainder) <= 0) {      quotient = quotient.add(unit);      remainder = remainder.sub(divisor);    }    // Right-shift the divisor and unit.    divisor = divisor.rightShift();    unit = unit.rightShift();  }  return [quotient, remainder];};/** * Convert a 64-bit number to a string. * @return {string} * @override */jspb.arith.UInt64.prototype.toString = function() {  var result = '';  var num = this;  while (!num.zero()) {    var divResult = num.div(10);    var quotient = divResult[0], remainder = divResult[1];    result = remainder.lo + result;    num = quotient;  }  if (result == '') {    result = '0';  }  return result;};/** * Parse a string into a 64-bit number. Returns `null` on a parse error. * @param {string} s * @return {?jspb.arith.UInt64} */jspb.arith.UInt64.fromString = function(s) {  var result = new jspb.arith.UInt64(0, 0);  // optimization: reuse this instance for each digit.  var digit64 = new jspb.arith.UInt64(0, 0);  for (var i = 0; i < s.length; i++) {    if (s[i] < '0' || s[i] > '9') {      return null;    }    var digit = parseInt(s[i], 10);    digit64.lo = digit;    result = result.mul(10).add(digit64);  }  return result;};/** * Make a copy of the uint64. * @return {!jspb.arith.UInt64} */jspb.arith.UInt64.prototype.clone = function() {  return new jspb.arith.UInt64(this.lo, this.hi);};/** * Int64 is like UInt64, but modifies string conversions to interpret the stored * 64-bit value as a twos-complement-signed integer. It does *not* support the * full range of operations that UInt64 does: only add, subtract, and string * conversions. * * N.B. that multiply and divide routines are *NOT* supported. They will throw * exceptions. (They are not necessary to implement string conversions, which * are the only operations we really need in jspb.) * * @param {number} lo The low 32 bits. * @param {number} hi The high 32 bits. * @constructor */jspb.arith.Int64 = function(lo, hi) {  /**   * The low 32 bits.   * @public {number}   */  this.lo = lo;  /**   * The high 32 bits.   * @public {number}   */  this.hi = hi;};/** * Add two 64-bit numbers to produce a 64-bit number. * @param {!jspb.arith.Int64} other * @return {!jspb.arith.Int64} */jspb.arith.Int64.prototype.add = function(other) {  var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0;  var hi =      (((this.hi + other.hi) & 0xffffffff) >>> 0) +      (((this.lo + other.lo) >= 0x100000000) ? 1 : 0);  return new jspb.arith.Int64(lo >>> 0, hi >>> 0);};/** * Subtract two 64-bit numbers to produce a 64-bit number. * @param {!jspb.arith.Int64} other * @return {!jspb.arith.Int64} */jspb.arith.Int64.prototype.sub = function(other) {  var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0;  var hi =      (((this.hi - other.hi) & 0xffffffff) >>> 0) -      (((this.lo - other.lo) < 0) ? 1 : 0);  return new jspb.arith.Int64(lo >>> 0, hi >>> 0);};/** * Make a copy of the int64. * @return {!jspb.arith.Int64} */jspb.arith.Int64.prototype.clone = function() {  return new jspb.arith.Int64(this.lo, this.hi);};/** * Convert a 64-bit number to a string. * @return {string} * @override */jspb.arith.Int64.prototype.toString = function() {  // If the number is negative, find its twos-complement inverse.  var sign = (this.hi & 0x80000000) != 0;  var num = new jspb.arith.UInt64(this.lo, this.hi);  if (sign) {    num = new jspb.arith.UInt64(0, 0).sub(num);  }  return (sign ? '-' : '') + num.toString();};/** * Parse a string into a 64-bit number. Returns `null` on a parse error. * @param {string} s * @return {?jspb.arith.Int64} */jspb.arith.Int64.fromString = function(s) {  var hasNegative = (s.length > 0 && s[0] == '-');  if (hasNegative) {    s = s.substring(1);  }  var num = jspb.arith.UInt64.fromString(s);  if (num === null) {    return null;  }  if (hasNegative) {    num = new jspb.arith.UInt64(0, 0).sub(num);  }  return new jspb.arith.Int64(num.lo, num.hi);};
 |