| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211 | // Protocol Buffers - Google's data interchange format// Copyright 2014 Google Inc.  All rights reserved.// https://developers.google.com/protocol-buffers///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:////     * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//     * Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.//     * Neither the name of Google Inc. nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.#include "protobuf.h"// This function is equivalent to rb_str_cat(), but unlike the real// rb_str_cat(), it doesn't leak memory in some versions of Ruby.// For more information, see://   https://bugs.ruby-lang.org/issues/11328VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) {  char *p;  size_t oldlen = RSTRING_LEN(rb_str);  rb_str_modify_expand(rb_str, len);  p = RSTRING_PTR(rb_str);  memcpy(p + oldlen, str, len);  rb_str_set_len(rb_str, oldlen + len);  return rb_str;}// -----------------------------------------------------------------------------// Parsing.// -----------------------------------------------------------------------------#define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs)// Creates a handlerdata that simply contains the offset for this field.static const void* newhandlerdata(upb_handlers* h, uint32_t ofs) {  size_t* hd_ofs = ALLOC(size_t);  *hd_ofs = ofs;  upb_handlers_addcleanup(h, hd_ofs, free);  return hd_ofs;}typedef struct {  size_t ofs;  const upb_msgdef *md;} submsg_handlerdata_t;// Creates a handlerdata that contains offset and submessage type information.static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs,                                        const upb_fielddef* f) {  submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t);  hd->ofs = ofs;  hd->md = upb_fielddef_msgsubdef(f);  upb_handlers_addcleanup(h, hd, free);  return hd;}typedef struct {  size_t ofs;              // union data slot  size_t case_ofs;         // oneof_case field  uint32_t oneof_case_num; // oneof-case number to place in oneof_case field  const upb_msgdef *md;    // msgdef, for oneof submessage handler} oneof_handlerdata_t;static const void *newoneofhandlerdata(upb_handlers *h,                                       uint32_t ofs,                                       uint32_t case_ofs,                                       const upb_fielddef *f) {  oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t);  hd->ofs = ofs;  hd->case_ofs = case_ofs;  // We reuse the field tag number as a oneof union discriminant tag. Note that  // we don't expose these numbers to the user, so the only requirement is that  // we have some unique ID for each union case/possibility. The field tag  // numbers are already present and are easy to use so there's no reason to  // create a separate ID space. In addition, using the field tag number here  // lets us easily look up the field in the oneof accessor.  hd->oneof_case_num = upb_fielddef_number(f);  if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE) {    hd->md = upb_fielddef_msgsubdef(f);  } else {    hd->md = NULL;  }  upb_handlers_addcleanup(h, hd, free);  return hd;}// A handler that starts a repeated field.  Gets the Repeated*Field instance for// this field (such an instance always exists even in an empty message).static void *startseq_handler(void* closure, const void* hd) {  MessageHeader* msg = closure;  const size_t *ofs = hd;  return (void*)DEREF(msg, *ofs, VALUE);}// Handlers that append primitive values to a repeated field.#define DEFINE_APPEND_HANDLER(type, ctype)                 \  static bool append##type##_handler(void *closure, const void *hd, \                                     ctype val) {                   \    VALUE ary = (VALUE)closure;                                     \    RepeatedField_push_native(ary, &val);                           \    return true;                                                    \  }DEFINE_APPEND_HANDLER(bool,   bool)DEFINE_APPEND_HANDLER(int32,  int32_t)DEFINE_APPEND_HANDLER(uint32, uint32_t)DEFINE_APPEND_HANDLER(float,  float)DEFINE_APPEND_HANDLER(int64,  int64_t)DEFINE_APPEND_HANDLER(uint64, uint64_t)DEFINE_APPEND_HANDLER(double, double)// Appends a string to a repeated field.static void* appendstr_handler(void *closure,                               const void *hd,                               size_t size_hint) {  VALUE ary = (VALUE)closure;  VALUE str = rb_str_new2("");  rb_enc_associate(str, kRubyStringUtf8Encoding);  RepeatedField_push(ary, str);  return (void*)str;}// Appends a 'bytes' string to a repeated field.static void* appendbytes_handler(void *closure,                                 const void *hd,                                 size_t size_hint) {  VALUE ary = (VALUE)closure;  VALUE str = rb_str_new2("");  rb_enc_associate(str, kRubyString8bitEncoding);  RepeatedField_push(ary, str);  return (void*)str;}// Sets a non-repeated string field in a message.static void* str_handler(void *closure,                         const void *hd,                         size_t size_hint) {  MessageHeader* msg = closure;  const size_t *ofs = hd;  VALUE str = rb_str_new2("");  rb_enc_associate(str, kRubyStringUtf8Encoding);  DEREF(msg, *ofs, VALUE) = str;  return (void*)str;}// Sets a non-repeated 'bytes' field in a message.static void* bytes_handler(void *closure,                           const void *hd,                           size_t size_hint) {  MessageHeader* msg = closure;  const size_t *ofs = hd;  VALUE str = rb_str_new2("");  rb_enc_associate(str, kRubyString8bitEncoding);  DEREF(msg, *ofs, VALUE) = str;  return (void*)str;}static size_t stringdata_handler(void* closure, const void* hd,                                 const char* str, size_t len,                                 const upb_bufhandle* handle) {  VALUE rb_str = (VALUE)closure;  noleak_rb_str_cat(rb_str, str, len);  return len;}// Appends a submessage to a repeated field (a regular Ruby array for now).static void *appendsubmsg_handler(void *closure, const void *hd) {  VALUE ary = (VALUE)closure;  const submsg_handlerdata_t *submsgdata = hd;  VALUE subdesc =      get_def_obj((void*)submsgdata->md);  VALUE subklass = Descriptor_msgclass(subdesc);  MessageHeader* submsg;  VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass);  RepeatedField_push(ary, submsg_rb);  TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);  return submsg;}// Sets a non-repeated submessage field in a message.static void *submsg_handler(void *closure, const void *hd) {  MessageHeader* msg = closure;  const submsg_handlerdata_t* submsgdata = hd;  VALUE subdesc =      get_def_obj((void*)submsgdata->md);  VALUE subklass = Descriptor_msgclass(subdesc);  VALUE submsg_rb;  MessageHeader* submsg;  if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) {    DEREF(msg, submsgdata->ofs, VALUE) =        rb_class_new_instance(0, NULL, subklass);  }  submsg_rb = DEREF(msg, submsgdata->ofs, VALUE);  TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);  return submsg;}// Handler data for startmap/endmap handlers.typedef struct {  size_t ofs;  upb_fieldtype_t key_field_type;  upb_fieldtype_t value_field_type;  // We know that we can hold this reference because the handlerdata has the  // same lifetime as the upb_handlers struct, and the upb_handlers struct holds  // a reference to the upb_msgdef, which in turn has references to its subdefs.  const upb_def* value_field_subdef;} map_handlerdata_t;// Temporary frame for map parsing: at the beginning of a map entry message, a// submsg handler allocates a frame to hold (i) a reference to the Map object// into which this message will be inserted and (ii) storage slots to// temporarily hold the key and value for this map entry until the end of the// submessage. When the submessage ends, another handler is called to insert the// value into the map.typedef struct {  VALUE map;  char key_storage[NATIVE_SLOT_MAX_SIZE];  char value_storage[NATIVE_SLOT_MAX_SIZE];} map_parse_frame_t;// Handler to begin a map entry: allocates a temporary frame. This is the// 'startsubmsg' handler on the msgdef that contains the map field.static void *startmapentry_handler(void *closure, const void *hd) {  MessageHeader* msg = closure;  const map_handlerdata_t* mapdata = hd;  VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE);  map_parse_frame_t* frame = ALLOC(map_parse_frame_t);  frame->map = map_rb;  native_slot_init(mapdata->key_field_type, &frame->key_storage);  native_slot_init(mapdata->value_field_type, &frame->value_storage);  return frame;}// Handler to end a map entry: inserts the value defined during the message into// the map. This is the 'endmsg' handler on the map entry msgdef.static bool endmap_handler(void *closure, const void *hd, upb_status* s) {  map_parse_frame_t* frame = closure;  const map_handlerdata_t* mapdata = hd;  VALUE key = native_slot_get(      mapdata->key_field_type, Qnil,      &frame->key_storage);  VALUE value_field_typeclass = Qnil;  VALUE value;  if (mapdata->value_field_type == UPB_TYPE_MESSAGE ||      mapdata->value_field_type == UPB_TYPE_ENUM) {    value_field_typeclass = get_def_obj(mapdata->value_field_subdef);  }  value = native_slot_get(      mapdata->value_field_type, value_field_typeclass,      &frame->value_storage);  Map_index_set(frame->map, key, value);  free(frame);  return true;}// Allocates a new map_handlerdata_t given the map entry message definition. If// the offset of the field within the parent message is also given, that is// added to the handler data as well. Note that this is called *twice* per map// field: once in the parent message handler setup when setting the startsubmsg// handler and once in the map entry message handler setup when setting the// key/value and endmsg handlers. The reason is that there is no easy way to// pass the handlerdata down to the sub-message handler setup.static map_handlerdata_t* new_map_handlerdata(    size_t ofs,    const upb_msgdef* mapentry_def,    Descriptor* desc) {  const upb_fielddef* key_field;  const upb_fielddef* value_field;  map_handlerdata_t* hd = ALLOC(map_handlerdata_t);  hd->ofs = ofs;  key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD);  assert(key_field != NULL);  hd->key_field_type = upb_fielddef_type(key_field);  value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD);  assert(value_field != NULL);  hd->value_field_type = upb_fielddef_type(value_field);  hd->value_field_subdef = upb_fielddef_subdef(value_field);  return hd;}// Handlers that set primitive values in oneofs.#define DEFINE_ONEOF_HANDLER(type, ctype)                           \  static bool oneof##type##_handler(void *closure, const void *hd,  \                                     ctype val) {                   \    const oneof_handlerdata_t *oneofdata = hd;                      \    DEREF(closure, oneofdata->case_ofs, uint32_t) =                 \        oneofdata->oneof_case_num;                                  \    DEREF(closure, oneofdata->ofs, ctype) = val;                    \    return true;                                                    \  }DEFINE_ONEOF_HANDLER(bool,   bool)DEFINE_ONEOF_HANDLER(int32,  int32_t)DEFINE_ONEOF_HANDLER(uint32, uint32_t)DEFINE_ONEOF_HANDLER(float,  float)DEFINE_ONEOF_HANDLER(int64,  int64_t)DEFINE_ONEOF_HANDLER(uint64, uint64_t)DEFINE_ONEOF_HANDLER(double, double)#undef DEFINE_ONEOF_HANDLER// Handlers for strings in a oneof.static void *oneofstr_handler(void *closure,                              const void *hd,                              size_t size_hint) {  MessageHeader* msg = closure;  const oneof_handlerdata_t *oneofdata = hd;  VALUE str = rb_str_new2("");  rb_enc_associate(str, kRubyStringUtf8Encoding);  DEREF(msg, oneofdata->case_ofs, uint32_t) =      oneofdata->oneof_case_num;  DEREF(msg, oneofdata->ofs, VALUE) = str;  return (void*)str;}static void *oneofbytes_handler(void *closure,                                const void *hd,                                size_t size_hint) {  MessageHeader* msg = closure;  const oneof_handlerdata_t *oneofdata = hd;  VALUE str = rb_str_new2("");  rb_enc_associate(str, kRubyString8bitEncoding);  DEREF(msg, oneofdata->case_ofs, uint32_t) =      oneofdata->oneof_case_num;  DEREF(msg, oneofdata->ofs, VALUE) = str;  return (void*)str;}// Handler for a submessage field in a oneof.static void *oneofsubmsg_handler(void *closure,                                 const void *hd) {  MessageHeader* msg = closure;  const oneof_handlerdata_t *oneofdata = hd;  uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t);  VALUE subdesc =      get_def_obj((void*)oneofdata->md);  VALUE subklass = Descriptor_msgclass(subdesc);  VALUE submsg_rb;  MessageHeader* submsg;  if (oldcase != oneofdata->oneof_case_num ||      DEREF(msg, oneofdata->ofs, VALUE) == Qnil) {    DEREF(msg, oneofdata->ofs, VALUE) =        rb_class_new_instance(0, NULL, subklass);  }  // Set the oneof case *after* allocating the new class instance -- otherwise,  // if the Ruby GC is invoked as part of a call into the VM, it might invoke  // our mark routines, and our mark routines might see the case value  // indicating a VALUE is present and expect a valid VALUE. See comment in  // layout_set() for more detail: basically, the change to the value and the  // case must be atomic w.r.t. the Ruby VM.  DEREF(msg, oneofdata->case_ofs, uint32_t) =      oneofdata->oneof_case_num;  submsg_rb = DEREF(msg, oneofdata->ofs, VALUE);  TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);  return submsg;}// Set up handlers for a repeated field.static void add_handlers_for_repeated_field(upb_handlers *h,                                            const upb_fielddef *f,                                            size_t offset) {  upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;  upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset));  upb_handlers_setstartseq(h, f, startseq_handler, &attr);  upb_handlerattr_uninit(&attr);  switch (upb_fielddef_type(f)) {#define SET_HANDLER(utype, ltype)                                 \  case utype:                                                     \    upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \    break;    SET_HANDLER(UPB_TYPE_BOOL,   bool);    SET_HANDLER(UPB_TYPE_INT32,  int32);    SET_HANDLER(UPB_TYPE_UINT32, uint32);    SET_HANDLER(UPB_TYPE_ENUM,   int32);    SET_HANDLER(UPB_TYPE_FLOAT,  float);    SET_HANDLER(UPB_TYPE_INT64,  int64);    SET_HANDLER(UPB_TYPE_UINT64, uint64);    SET_HANDLER(UPB_TYPE_DOUBLE, double);#undef SET_HANDLER    case UPB_TYPE_STRING:    case UPB_TYPE_BYTES: {      bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;      upb_handlers_setstartstr(h, f, is_bytes ?                               appendbytes_handler : appendstr_handler,                               NULL);      upb_handlers_setstring(h, f, stringdata_handler, NULL);      break;    }    case UPB_TYPE_MESSAGE: {      upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;      upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f));      upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr);      upb_handlerattr_uninit(&attr);      break;    }  }}// Set up handlers for a singular field.static void add_handlers_for_singular_field(upb_handlers *h,                                            const upb_fielddef *f,                                            size_t offset) {  switch (upb_fielddef_type(f)) {    case UPB_TYPE_BOOL:    case UPB_TYPE_INT32:    case UPB_TYPE_UINT32:    case UPB_TYPE_ENUM:    case UPB_TYPE_FLOAT:    case UPB_TYPE_INT64:    case UPB_TYPE_UINT64:    case UPB_TYPE_DOUBLE:      upb_shim_set(h, f, offset, -1);      break;    case UPB_TYPE_STRING:    case UPB_TYPE_BYTES: {      bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;      upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;      upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset));      upb_handlers_setstartstr(h, f,                               is_bytes ? bytes_handler : str_handler,                               &attr);      upb_handlers_setstring(h, f, stringdata_handler, &attr);      upb_handlerattr_uninit(&attr);      break;    }    case UPB_TYPE_MESSAGE: {      upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;      upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, f));      upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr);      upb_handlerattr_uninit(&attr);      break;    }  }}// Adds handlers to a map field.static void add_handlers_for_mapfield(upb_handlers* h,                                      const upb_fielddef* fielddef,                                      size_t offset,                                      Descriptor* desc) {  const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef);  map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc);  upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;  upb_handlers_addcleanup(h, hd, free);  upb_handlerattr_sethandlerdata(&attr, hd);  upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr);  upb_handlerattr_uninit(&attr);}// Adds handlers to a map-entry msgdef.static void add_handlers_for_mapentry(const upb_msgdef* msgdef,                                      upb_handlers* h,                                      Descriptor* desc) {  const upb_fielddef* key_field = map_entry_key(msgdef);  const upb_fielddef* value_field = map_entry_value(msgdef);  map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc);  upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;  upb_handlers_addcleanup(h, hd, free);  upb_handlerattr_sethandlerdata(&attr, hd);  upb_handlers_setendmsg(h, endmap_handler, &attr);  add_handlers_for_singular_field(      h, key_field,      offsetof(map_parse_frame_t, key_storage));  add_handlers_for_singular_field(      h, value_field,      offsetof(map_parse_frame_t, value_storage));}// Set up handlers for a oneof field.static void add_handlers_for_oneof_field(upb_handlers *h,                                         const upb_fielddef *f,                                         size_t offset,                                         size_t oneof_case_offset) {  upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;  upb_handlerattr_sethandlerdata(      &attr, newoneofhandlerdata(h, offset, oneof_case_offset, f));  switch (upb_fielddef_type(f)) {#define SET_HANDLER(utype, ltype)                                 \  case utype:                                                     \    upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \    break;    SET_HANDLER(UPB_TYPE_BOOL,   bool);    SET_HANDLER(UPB_TYPE_INT32,  int32);    SET_HANDLER(UPB_TYPE_UINT32, uint32);    SET_HANDLER(UPB_TYPE_ENUM,   int32);    SET_HANDLER(UPB_TYPE_FLOAT,  float);    SET_HANDLER(UPB_TYPE_INT64,  int64);    SET_HANDLER(UPB_TYPE_UINT64, uint64);    SET_HANDLER(UPB_TYPE_DOUBLE, double);#undef SET_HANDLER    case UPB_TYPE_STRING:    case UPB_TYPE_BYTES: {      bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;      upb_handlers_setstartstr(h, f, is_bytes ?                               oneofbytes_handler : oneofstr_handler,                               &attr);      upb_handlers_setstring(h, f, stringdata_handler, NULL);      break;    }    case UPB_TYPE_MESSAGE: {      upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr);      break;    }  }  upb_handlerattr_uninit(&attr);}static void add_handlers_for_message(const void *closure, upb_handlers *h) {  const upb_msgdef* msgdef = upb_handlers_msgdef(h);  Descriptor* desc = ruby_to_Descriptor(get_def_obj((void*)msgdef));  upb_msg_field_iter i;  // If this is a mapentry message type, set up a special set of handlers and  // bail out of the normal (user-defined) message type handling.  if (upb_msgdef_mapentry(msgdef)) {    add_handlers_for_mapentry(msgdef, h, desc);    return;  }  // Ensure layout exists. We may be invoked to create handlers for a given  // message if we are included as a submsg of another message type before our  // class is actually built, so to work around this, we just create the layout  // (and handlers, in the class-building function) on-demand.  if (desc->layout == NULL) {    desc->layout = create_layout(desc->msgdef);  }  for (upb_msg_field_begin(&i, desc->msgdef);       !upb_msg_field_done(&i);       upb_msg_field_next(&i)) {    const upb_fielddef *f = upb_msg_iter_field(&i);    size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset +        sizeof(MessageHeader);    if (upb_fielddef_containingoneof(f)) {      size_t oneof_case_offset =          desc->layout->fields[upb_fielddef_index(f)].case_offset +          sizeof(MessageHeader);      add_handlers_for_oneof_field(h, f, offset, oneof_case_offset);    } else if (is_map_field(f)) {      add_handlers_for_mapfield(h, f, offset, desc);    } else if (upb_fielddef_isseq(f)) {      add_handlers_for_repeated_field(h, f, offset);    } else {      add_handlers_for_singular_field(h, f, offset);    }  }}// Creates upb handlers for populating a message.static const upb_handlers *new_fill_handlers(Descriptor* desc,                                             const void* owner) {  // TODO(cfallin, haberman): once upb gets a caching/memoization layer for  // handlers, reuse subdef handlers so that e.g. if we already parse  // B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to  // parse A-with-field-of-type-B-with-field-of-type-C.  return upb_handlers_newfrozen(desc->msgdef, owner,                                add_handlers_for_message, NULL);}// Constructs the handlers for filling a message's data into an in-memory// object.const upb_handlers* get_fill_handlers(Descriptor* desc) {  if (!desc->fill_handlers) {    desc->fill_handlers =        new_fill_handlers(desc, &desc->fill_handlers);  }  return desc->fill_handlers;}// Constructs the upb decoder method for parsing messages of this type.// This is called from the message class creation code.const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc,                                                     const void* owner) {  const upb_handlers* handlers = get_fill_handlers(desc);  upb_pbdecodermethodopts opts;  upb_pbdecodermethodopts_init(&opts, handlers);  return upb_pbdecodermethod_new(&opts, owner);}static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) {  if (desc->fill_method == NULL) {    desc->fill_method = new_fillmsg_decodermethod(        desc, &desc->fill_method);  }  return desc->fill_method;}static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) {  if (desc->json_fill_method == NULL) {    desc->json_fill_method =        upb_json_parsermethod_new(desc->msgdef, &desc->json_fill_method);  }  return desc->json_fill_method;}// Stack-allocated context during an encode/decode operation. Contains the upb// environment and its stack-based allocator, an initial buffer for allocations// to avoid malloc() when possible, and a template for Ruby exception messages// if any error occurs.#define STACK_ENV_STACKBYTES 4096typedef struct {  upb_env env;  upb_seededalloc alloc;  const char* ruby_error_template;  char allocbuf[STACK_ENV_STACKBYTES];} stackenv;static void stackenv_init(stackenv* se, const char* errmsg);static void stackenv_uninit(stackenv* se);// Callback invoked by upb if any error occurs during parsing or serialization.static bool env_error_func(void* ud, const upb_status* status) {  stackenv* se = ud;  // Free the env -- rb_raise will longjmp up the stack past the encode/decode  // function so it would not otherwise have been freed.  stackenv_uninit(se);  // TODO(haberman): have a way to verify that this is actually a parse error,  // instead of just throwing "parse error" unconditionally.  rb_raise(cParseError, se->ruby_error_template, upb_status_errmsg(status));  // Never reached: rb_raise() always longjmp()s up the stack, past all of our  // code, back to Ruby.  return false;}static void stackenv_init(stackenv* se, const char* errmsg) {  se->ruby_error_template = errmsg;  upb_env_init(&se->env);  upb_seededalloc_init(&se->alloc, &se->allocbuf, STACK_ENV_STACKBYTES);  upb_env_setallocfunc(      &se->env, upb_seededalloc_getallocfunc(&se->alloc), &se->alloc);  upb_env_seterrorfunc(&se->env, env_error_func, se);}static void stackenv_uninit(stackenv* se) {  upb_env_uninit(&se->env);  upb_seededalloc_uninit(&se->alloc);}/* * call-seq: *     MessageClass.decode(data) => message * * Decodes the given data (as a string containing bytes in protocol buffers wire * format) under the interpretration given by this message class's definition * and returns a message object with the corresponding field values. */VALUE Message_decode(VALUE klass, VALUE data) {  VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);  Descriptor* desc = ruby_to_Descriptor(descriptor);  VALUE msgklass = Descriptor_msgclass(descriptor);  VALUE msg_rb;  MessageHeader* msg;  if (TYPE(data) != T_STRING) {    rb_raise(rb_eArgError, "Expected string for binary protobuf data.");  }  msg_rb = rb_class_new_instance(0, NULL, msgklass);  TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);  {    const upb_pbdecodermethod* method = msgdef_decodermethod(desc);    const upb_handlers* h = upb_pbdecodermethod_desthandlers(method);    stackenv se;    upb_sink sink;    upb_pbdecoder* decoder;    stackenv_init(&se, "Error occurred during parsing: %s");    upb_sink_reset(&sink, h, msg);    decoder = upb_pbdecoder_create(&se.env, method, &sink);    upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),                      upb_pbdecoder_input(decoder));    stackenv_uninit(&se);  }  return msg_rb;}/* * call-seq: *     MessageClass.decode_json(data) => message * * Decodes the given data (as a string containing bytes in protocol buffers wire * format) under the interpretration given by this message class's definition * and returns a message object with the corresponding field values. */VALUE Message_decode_json(VALUE klass, VALUE data) {  VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);  Descriptor* desc = ruby_to_Descriptor(descriptor);  VALUE msgklass = Descriptor_msgclass(descriptor);  VALUE msg_rb;  MessageHeader* msg;  if (TYPE(data) != T_STRING) {    rb_raise(rb_eArgError, "Expected string for JSON data.");  }  // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to  // convert, because string handlers pass data directly to message string  // fields.  msg_rb = rb_class_new_instance(0, NULL, msgklass);  TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);  {    const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc);    stackenv se;    upb_sink sink;    upb_json_parser* parser;    stackenv_init(&se, "Error occurred during parsing: %s");    upb_sink_reset(&sink, get_fill_handlers(desc), msg);    parser = upb_json_parser_create(&se.env, method, &sink);    upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),                      upb_json_parser_input(parser));    stackenv_uninit(&se);  }  return msg_rb;}// -----------------------------------------------------------------------------// Serializing.// -----------------------------------------------------------------------------//// The code below also comes from upb's prototype Ruby binding, developed by// haberman@./* stringsink *****************************************************************/// This should probably be factored into a common upb component.typedef struct {  upb_byteshandler handler;  upb_bytessink sink;  char *ptr;  size_t len, size;} stringsink;static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {  stringsink *sink = _sink;  sink->len = 0;  return sink;}static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,                                size_t len, const upb_bufhandle *handle) {  stringsink *sink = _sink;  size_t new_size = sink->size;  UPB_UNUSED(hd);  UPB_UNUSED(handle);  while (sink->len + len > new_size) {    new_size *= 2;  }  if (new_size != sink->size) {    sink->ptr = realloc(sink->ptr, new_size);    sink->size = new_size;  }  memcpy(sink->ptr + sink->len, ptr, len);  sink->len += len;  return len;}void stringsink_init(stringsink *sink) {  upb_byteshandler_init(&sink->handler);  upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);  upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);  upb_bytessink_reset(&sink->sink, &sink->handler, sink);  sink->size = 32;  sink->ptr = malloc(sink->size);  sink->len = 0;}void stringsink_uninit(stringsink *sink) {  free(sink->ptr);}/* msgvisitor *****************************************************************/// TODO: If/when we support proto2 semantics in addition to the current proto3// semantics, which means that we have true field presence, we will want to// modify msgvisitor so that it emits all present fields rather than all// non-default-value fields.//// Likewise, when implementing JSON serialization, we may need to have a// 'verbose' mode that outputs all fields and a 'concise' mode that outputs only// those with non-default values.static void putmsg(VALUE msg, const Descriptor* desc,                   upb_sink *sink, int depth);static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {  upb_selector_t ret;  bool ok = upb_handlers_getselector(f, type, &ret);  UPB_ASSERT_VAR(ok, ok);  return ret;}static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) {  upb_sink subsink;  if (str == Qnil) return;  assert(BUILTIN_TYPE(str) == RUBY_T_STRING);  // Ensure that the string has the correct encoding. We also check at field-set  // time, but the user may have mutated the string object since then.  native_slot_validate_string_encoding(upb_fielddef_type(f), str);  upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str),                    &subsink);  upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str),                     RSTRING_LEN(str), NULL);  upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));}static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink,                      int depth) {  upb_sink subsink;  VALUE descriptor;  Descriptor* subdesc;  if (submsg == Qnil) return;  descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);  subdesc = ruby_to_Descriptor(descriptor);  upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink);  putmsg(submsg, subdesc, &subsink, depth + 1);  upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG));}static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink,                   int depth) {  upb_sink subsink;  upb_fieldtype_t type = upb_fielddef_type(f);  upb_selector_t sel = 0;  int size;  if (ary == Qnil) return;  upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);  if (upb_fielddef_isprimitive(f)) {    sel = getsel(f, upb_handlers_getprimitivehandlertype(f));  }  size = NUM2INT(RepeatedField_length(ary));  for (int i = 0; i < size; i++) {    void* memory = RepeatedField_index_native(ary, i);    switch (type) {#define T(upbtypeconst, upbtype, ctype)                         \  case upbtypeconst:                                            \    upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory));   \    break;      T(UPB_TYPE_FLOAT,  float,  float)      T(UPB_TYPE_DOUBLE, double, double)      T(UPB_TYPE_BOOL,   bool,   int8_t)      case UPB_TYPE_ENUM:      T(UPB_TYPE_INT32,  int32,  int32_t)      T(UPB_TYPE_UINT32, uint32, uint32_t)      T(UPB_TYPE_INT64,  int64,  int64_t)      T(UPB_TYPE_UINT64, uint64, uint64_t)      case UPB_TYPE_STRING:      case UPB_TYPE_BYTES:        putstr(*((VALUE *)memory), f, &subsink);        break;      case UPB_TYPE_MESSAGE:        putsubmsg(*((VALUE *)memory), f, &subsink, depth);        break;#undef T    }  }  upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));}static void put_ruby_value(VALUE value,                           const upb_fielddef *f,                           VALUE type_class,                           int depth,                           upb_sink *sink) {  upb_selector_t sel = 0;  if (upb_fielddef_isprimitive(f)) {    sel = getsel(f, upb_handlers_getprimitivehandlertype(f));  }  switch (upb_fielddef_type(f)) {    case UPB_TYPE_INT32:      upb_sink_putint32(sink, sel, NUM2INT(value));      break;    case UPB_TYPE_INT64:      upb_sink_putint64(sink, sel, NUM2LL(value));      break;    case UPB_TYPE_UINT32:      upb_sink_putuint32(sink, sel, NUM2UINT(value));      break;    case UPB_TYPE_UINT64:      upb_sink_putuint64(sink, sel, NUM2ULL(value));      break;    case UPB_TYPE_FLOAT:      upb_sink_putfloat(sink, sel, NUM2DBL(value));      break;    case UPB_TYPE_DOUBLE:      upb_sink_putdouble(sink, sel, NUM2DBL(value));      break;    case UPB_TYPE_ENUM: {      if (TYPE(value) == T_SYMBOL) {        value = rb_funcall(type_class, rb_intern("resolve"), 1, value);      }      upb_sink_putint32(sink, sel, NUM2INT(value));      break;    }    case UPB_TYPE_BOOL:      upb_sink_putbool(sink, sel, value == Qtrue);      break;    case UPB_TYPE_STRING:    case UPB_TYPE_BYTES:      putstr(value, f, sink);      break;    case UPB_TYPE_MESSAGE:      putsubmsg(value, f, sink, depth);  }}static void putmap(VALUE map, const upb_fielddef *f, upb_sink *sink,                   int depth) {  Map* self;  upb_sink subsink;  const upb_fielddef* key_field;  const upb_fielddef* value_field;  Map_iter it;  if (map == Qnil) return;  self = ruby_to_Map(map);  upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);  assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE);  key_field = map_field_key(f);  value_field = map_field_value(f);  for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) {    VALUE key = Map_iter_key(&it);    VALUE value = Map_iter_value(&it);    upb_status status;    upb_sink entry_sink;    upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG),                         &entry_sink);    upb_sink_startmsg(&entry_sink);    put_ruby_value(key, key_field, Qnil, depth + 1, &entry_sink);    put_ruby_value(value, value_field, self->value_type_class, depth + 1,                   &entry_sink);    upb_sink_endmsg(&entry_sink, &status);    upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG));  }  upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));}static void putmsg(VALUE msg_rb, const Descriptor* desc,                   upb_sink *sink, int depth) {  MessageHeader* msg;  upb_msg_field_iter i;  upb_status status;  upb_sink_startmsg(sink);  // Protect against cycles (possible because users may freely reassign message  // and repeated fields) by imposing a maximum recursion depth.  if (depth > ENCODE_MAX_NESTING) {    rb_raise(rb_eRuntimeError,             "Maximum recursion depth exceeded during encoding.");  }  TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);  for (upb_msg_field_begin(&i, desc->msgdef);       !upb_msg_field_done(&i);       upb_msg_field_next(&i)) {    upb_fielddef *f = upb_msg_iter_field(&i);    bool is_matching_oneof = false;    uint32_t offset =        desc->layout->fields[upb_fielddef_index(f)].offset +        sizeof(MessageHeader);    if (upb_fielddef_containingoneof(f)) {      uint32_t oneof_case_offset =          desc->layout->fields[upb_fielddef_index(f)].case_offset +          sizeof(MessageHeader);      // For a oneof, check that this field is actually present -- skip all the      // below if not.      if (DEREF(msg, oneof_case_offset, uint32_t) !=          upb_fielddef_number(f)) {        continue;      }      // Otherwise, fall through to the appropriate singular-field handler      // below.      is_matching_oneof = true;    }    if (is_map_field(f)) {      VALUE map = DEREF(msg, offset, VALUE);      if (map != Qnil) {        putmap(map, f, sink, depth);      }    } else if (upb_fielddef_isseq(f)) {      VALUE ary = DEREF(msg, offset, VALUE);      if (ary != Qnil) {        putary(ary, f, sink, depth);      }    } else if (upb_fielddef_isstring(f)) {      VALUE str = DEREF(msg, offset, VALUE);      if (is_matching_oneof || RSTRING_LEN(str) > 0) {        putstr(str, f, sink);      }    } else if (upb_fielddef_issubmsg(f)) {      putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth);    } else {      upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));#define T(upbtypeconst, upbtype, ctype, default_value)                \  case upbtypeconst: {                                                \      ctype value = DEREF(msg, offset, ctype);                        \      if (is_matching_oneof || value != default_value) {              \        upb_sink_put##upbtype(sink, sel, value);                      \      }                                                               \    }                                                                 \    break;      switch (upb_fielddef_type(f)) {        T(UPB_TYPE_FLOAT,  float,  float, 0.0)        T(UPB_TYPE_DOUBLE, double, double, 0.0)        T(UPB_TYPE_BOOL,   bool,   uint8_t, 0)        case UPB_TYPE_ENUM:        T(UPB_TYPE_INT32,  int32,  int32_t, 0)        T(UPB_TYPE_UINT32, uint32, uint32_t, 0)        T(UPB_TYPE_INT64,  int64,  int64_t, 0)        T(UPB_TYPE_UINT64, uint64, uint64_t, 0)        case UPB_TYPE_STRING:        case UPB_TYPE_BYTES:        case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error.");      }#undef T    }  }  upb_sink_endmsg(sink, &status);}static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) {  if (desc->pb_serialize_handlers == NULL) {    desc->pb_serialize_handlers =        upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers);  }  return desc->pb_serialize_handlers;}static const upb_handlers* msgdef_json_serialize_handlers(Descriptor* desc) {  if (desc->json_serialize_handlers == NULL) {    desc->json_serialize_handlers =        upb_json_printer_newhandlers(            desc->msgdef, &desc->json_serialize_handlers);  }  return desc->json_serialize_handlers;}/* * call-seq: *     MessageClass.encode(msg) => bytes * * Encodes the given message object to its serialized form in protocol buffers * wire format. */VALUE Message_encode(VALUE klass, VALUE msg_rb) {  VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);  Descriptor* desc = ruby_to_Descriptor(descriptor);  stringsink sink;  stringsink_init(&sink);  {    const upb_handlers* serialize_handlers =        msgdef_pb_serialize_handlers(desc);    stackenv se;    upb_pb_encoder* encoder;    VALUE ret;    stackenv_init(&se, "Error occurred during encoding: %s");    encoder = upb_pb_encoder_create(&se.env, serialize_handlers, &sink.sink);    putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0);    ret = rb_str_new(sink.ptr, sink.len);    stackenv_uninit(&se);    stringsink_uninit(&sink);    return ret;  }}/* * call-seq: *     MessageClass.encode_json(msg) => json_string * * Encodes the given message object into its serialized JSON representation. */VALUE Message_encode_json(VALUE klass, VALUE msg_rb) {  VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);  Descriptor* desc = ruby_to_Descriptor(descriptor);  stringsink sink;  stringsink_init(&sink);  {    const upb_handlers* serialize_handlers =        msgdef_json_serialize_handlers(desc);    upb_json_printer* printer;    stackenv se;    VALUE ret;    stackenv_init(&se, "Error occurred during encoding: %s");    printer = upb_json_printer_create(&se.env, serialize_handlers, &sink.sink);    putmsg(msg_rb, desc, upb_json_printer_input(printer), 0);    ret = rb_enc_str_new(sink.ptr, sink.len, rb_utf8_encoding());    stackenv_uninit(&se);    stringsink_uninit(&sink);    return ret;  }}
 |