storage.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092
  1. // Protocol Buffers - Google's data interchange format
  2. // Copyright 2014 Google Inc. All rights reserved.
  3. // https://developers.google.com/protocol-buffers/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are
  7. // met:
  8. //
  9. // * Redistributions of source code must retain the above copyright
  10. // notice, this list of conditions and the following disclaimer.
  11. // * Redistributions in binary form must reproduce the above
  12. // copyright notice, this list of conditions and the following disclaimer
  13. // in the documentation and/or other materials provided with the
  14. // distribution.
  15. // * Neither the name of Google Inc. nor the names of its
  16. // contributors may be used to endorse or promote products derived from
  17. // this software without specific prior written permission.
  18. //
  19. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  20. // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  21. // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  22. // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  23. // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  24. // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  25. // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  26. // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  27. // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  28. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  29. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30. #include "protobuf.h"
  31. #include <math.h>
  32. #include <ruby/encoding.h>
  33. // -----------------------------------------------------------------------------
  34. // Ruby <-> native slot management.
  35. // -----------------------------------------------------------------------------
  36. #define CHARPTR_AT(msg, ofs) ((char*)msg + ofs)
  37. #define DEREF_OFFSET(msg, ofs, type) *(type*)CHARPTR_AT(msg, ofs)
  38. #define DEREF(memory, type) *(type*)(memory)
  39. size_t native_slot_size(upb_fieldtype_t type) {
  40. switch (type) {
  41. case UPB_TYPE_FLOAT: return 4;
  42. case UPB_TYPE_DOUBLE: return 8;
  43. case UPB_TYPE_BOOL: return 1;
  44. case UPB_TYPE_STRING: return sizeof(VALUE);
  45. case UPB_TYPE_BYTES: return sizeof(VALUE);
  46. case UPB_TYPE_MESSAGE: return sizeof(VALUE);
  47. case UPB_TYPE_ENUM: return 4;
  48. case UPB_TYPE_INT32: return 4;
  49. case UPB_TYPE_INT64: return 8;
  50. case UPB_TYPE_UINT32: return 4;
  51. case UPB_TYPE_UINT64: return 8;
  52. default: return 0;
  53. }
  54. }
  55. static bool is_ruby_num(VALUE value) {
  56. return (TYPE(value) == T_FLOAT ||
  57. TYPE(value) == T_FIXNUM ||
  58. TYPE(value) == T_BIGNUM);
  59. }
  60. void native_slot_check_int_range_precision(const char* name, upb_fieldtype_t type, VALUE val) {
  61. if (!is_ruby_num(val)) {
  62. rb_raise(cTypeError, "Expected number type for integral field '%s' (given %s).",
  63. name, rb_class2name(CLASS_OF(val)));
  64. }
  65. // NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper
  66. // bound; we just need to do precision checks (i.e., disallow rounding) and
  67. // check for < 0 on unsigned types.
  68. if (TYPE(val) == T_FLOAT) {
  69. double dbl_val = NUM2DBL(val);
  70. if (floor(dbl_val) != dbl_val) {
  71. rb_raise(rb_eRangeError,
  72. "Non-integral floating point value assigned to integer field '%s' (given %s).",
  73. name, rb_class2name(CLASS_OF(val)));
  74. }
  75. }
  76. if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) {
  77. if (NUM2DBL(val) < 0) {
  78. rb_raise(rb_eRangeError,
  79. "Assigning negative value to unsigned integer field '%s' (given %s).",
  80. name, rb_class2name(CLASS_OF(val)));
  81. }
  82. }
  83. }
  84. VALUE native_slot_encode_and_freeze_string(upb_fieldtype_t type, VALUE value) {
  85. rb_encoding* desired_encoding = (type == UPB_TYPE_STRING) ?
  86. kRubyStringUtf8Encoding : kRubyString8bitEncoding;
  87. VALUE desired_encoding_value = rb_enc_from_encoding(desired_encoding);
  88. if (rb_obj_encoding(value) != desired_encoding_value || !OBJ_FROZEN(value)) {
  89. // Note: this will not duplicate underlying string data unless necessary.
  90. value = rb_str_encode(value, desired_encoding_value, 0, Qnil);
  91. if (type == UPB_TYPE_STRING &&
  92. rb_enc_str_coderange(value) == ENC_CODERANGE_BROKEN) {
  93. rb_raise(rb_eEncodingError, "String is invalid UTF-8");
  94. }
  95. // Ensure the data remains valid. Since we called #encode a moment ago,
  96. // this does not freeze the string the user assigned.
  97. rb_obj_freeze(value);
  98. }
  99. return value;
  100. }
  101. void native_slot_set(const char* name,
  102. upb_fieldtype_t type, VALUE type_class,
  103. void* memory, VALUE value) {
  104. native_slot_set_value_and_case(name, type, type_class, memory, value, NULL, 0);
  105. }
  106. void native_slot_set_value_and_case(const char* name,
  107. upb_fieldtype_t type, VALUE type_class,
  108. void* memory, VALUE value,
  109. uint32_t* case_memory,
  110. uint32_t case_number) {
  111. // Note that in order to atomically change the value in memory and the case
  112. // value (w.r.t. Ruby VM calls), we must set the value at |memory| only after
  113. // all Ruby VM calls are complete. The case is then set at the bottom of this
  114. // function.
  115. switch (type) {
  116. case UPB_TYPE_FLOAT:
  117. if (!is_ruby_num(value)) {
  118. rb_raise(cTypeError, "Expected number type for float field '%s' (given %s).",
  119. name, rb_class2name(CLASS_OF(value)));
  120. }
  121. DEREF(memory, float) = NUM2DBL(value);
  122. break;
  123. case UPB_TYPE_DOUBLE:
  124. if (!is_ruby_num(value)) {
  125. rb_raise(cTypeError, "Expected number type for double field '%s' (given %s).",
  126. name, rb_class2name(CLASS_OF(value)));
  127. }
  128. DEREF(memory, double) = NUM2DBL(value);
  129. break;
  130. case UPB_TYPE_BOOL: {
  131. int8_t val = -1;
  132. if (value == Qtrue) {
  133. val = 1;
  134. } else if (value == Qfalse) {
  135. val = 0;
  136. } else {
  137. rb_raise(cTypeError, "Invalid argument for boolean field '%s' (given %s).",
  138. name, rb_class2name(CLASS_OF(value)));
  139. }
  140. DEREF(memory, int8_t) = val;
  141. break;
  142. }
  143. case UPB_TYPE_STRING:
  144. if (CLASS_OF(value) == rb_cSymbol) {
  145. value = rb_funcall(value, rb_intern("to_s"), 0);
  146. } else if (CLASS_OF(value) != rb_cString) {
  147. rb_raise(cTypeError, "Invalid argument for string field '%s' (given %s).",
  148. name, rb_class2name(CLASS_OF(value)));
  149. }
  150. DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
  151. break;
  152. case UPB_TYPE_BYTES: {
  153. if (CLASS_OF(value) != rb_cString) {
  154. rb_raise(cTypeError, "Invalid argument for bytes field '%s' (given %s).",
  155. name, rb_class2name(CLASS_OF(value)));
  156. }
  157. DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
  158. break;
  159. }
  160. case UPB_TYPE_MESSAGE: {
  161. if (CLASS_OF(value) == CLASS_OF(Qnil)) {
  162. value = Qnil;
  163. } else if (CLASS_OF(value) != type_class) {
  164. // check for possible implicit conversions
  165. VALUE converted_value = Qnil;
  166. const char* field_type_name = rb_class2name(type_class);
  167. if (strcmp(field_type_name, "Google::Protobuf::Timestamp") == 0 &&
  168. rb_obj_is_kind_of(value, rb_cTime)) {
  169. // Time -> Google::Protobuf::Timestamp
  170. VALUE hash = rb_hash_new();
  171. rb_hash_aset(hash, rb_str_new2("seconds"),
  172. rb_funcall(value, rb_intern("to_i"), 0));
  173. rb_hash_aset(hash, rb_str_new2("nanos"),
  174. rb_funcall(value, rb_intern("nsec"), 0));
  175. {
  176. VALUE args[1] = {hash};
  177. converted_value = rb_class_new_instance(1, args, type_class);
  178. }
  179. } else if (strcmp(field_type_name, "Google::Protobuf::Duration") == 0 &&
  180. rb_obj_is_kind_of(value, rb_cNumeric)) {
  181. // Numeric -> Google::Protobuf::Duration
  182. VALUE hash = rb_hash_new();
  183. rb_hash_aset(hash, rb_str_new2("seconds"),
  184. rb_funcall(value, rb_intern("to_i"), 0));
  185. {
  186. VALUE n_value =
  187. rb_funcall(value, rb_intern("remainder"), 1, INT2NUM(1));
  188. n_value =
  189. rb_funcall(n_value, rb_intern("*"), 1, INT2NUM(1000000000));
  190. n_value = rb_funcall(n_value, rb_intern("round"), 0);
  191. rb_hash_aset(hash, rb_str_new2("nanos"), n_value);
  192. }
  193. {
  194. VALUE args[1] = { hash };
  195. converted_value = rb_class_new_instance(1, args, type_class);
  196. }
  197. }
  198. // raise if no suitable conversaion could be found
  199. if (converted_value == Qnil) {
  200. rb_raise(cTypeError,
  201. "Invalid type %s to assign to submessage field '%s'.",
  202. rb_class2name(CLASS_OF(value)), name);
  203. } else {
  204. value = converted_value;
  205. }
  206. }
  207. DEREF(memory, VALUE) = value;
  208. break;
  209. }
  210. case UPB_TYPE_ENUM: {
  211. int32_t int_val = 0;
  212. if (TYPE(value) == T_STRING) {
  213. value = rb_funcall(value, rb_intern("to_sym"), 0);
  214. } else if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) {
  215. rb_raise(cTypeError,
  216. "Expected number or symbol type for enum field '%s'.", name);
  217. }
  218. if (TYPE(value) == T_SYMBOL) {
  219. // Ensure that the given symbol exists in the enum module.
  220. VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value);
  221. if (lookup == Qnil) {
  222. rb_raise(rb_eRangeError, "Unknown symbol value for enum field '%s'.", name);
  223. } else {
  224. int_val = NUM2INT(lookup);
  225. }
  226. } else {
  227. native_slot_check_int_range_precision(name, UPB_TYPE_INT32, value);
  228. int_val = NUM2INT(value);
  229. }
  230. DEREF(memory, int32_t) = int_val;
  231. break;
  232. }
  233. case UPB_TYPE_INT32:
  234. case UPB_TYPE_INT64:
  235. case UPB_TYPE_UINT32:
  236. case UPB_TYPE_UINT64:
  237. native_slot_check_int_range_precision(name, type, value);
  238. switch (type) {
  239. case UPB_TYPE_INT32:
  240. DEREF(memory, int32_t) = NUM2INT(value);
  241. break;
  242. case UPB_TYPE_INT64:
  243. DEREF(memory, int64_t) = NUM2LL(value);
  244. break;
  245. case UPB_TYPE_UINT32:
  246. DEREF(memory, uint32_t) = NUM2UINT(value);
  247. break;
  248. case UPB_TYPE_UINT64:
  249. DEREF(memory, uint64_t) = NUM2ULL(value);
  250. break;
  251. default:
  252. break;
  253. }
  254. break;
  255. default:
  256. break;
  257. }
  258. if (case_memory != NULL) {
  259. *case_memory = case_number;
  260. }
  261. }
  262. VALUE native_slot_get(upb_fieldtype_t type,
  263. VALUE type_class,
  264. const void* memory) {
  265. switch (type) {
  266. case UPB_TYPE_FLOAT:
  267. return DBL2NUM(DEREF(memory, float));
  268. case UPB_TYPE_DOUBLE:
  269. return DBL2NUM(DEREF(memory, double));
  270. case UPB_TYPE_BOOL:
  271. return DEREF(memory, int8_t) ? Qtrue : Qfalse;
  272. case UPB_TYPE_STRING:
  273. case UPB_TYPE_BYTES:
  274. case UPB_TYPE_MESSAGE:
  275. return DEREF(memory, VALUE);
  276. case UPB_TYPE_ENUM: {
  277. int32_t val = DEREF(memory, int32_t);
  278. VALUE symbol = enum_lookup(type_class, INT2NUM(val));
  279. if (symbol == Qnil) {
  280. return INT2NUM(val);
  281. } else {
  282. return symbol;
  283. }
  284. }
  285. case UPB_TYPE_INT32:
  286. return INT2NUM(DEREF(memory, int32_t));
  287. case UPB_TYPE_INT64:
  288. return LL2NUM(DEREF(memory, int64_t));
  289. case UPB_TYPE_UINT32:
  290. return UINT2NUM(DEREF(memory, uint32_t));
  291. case UPB_TYPE_UINT64:
  292. return ULL2NUM(DEREF(memory, uint64_t));
  293. default:
  294. return Qnil;
  295. }
  296. }
  297. void native_slot_init(upb_fieldtype_t type, void* memory) {
  298. switch (type) {
  299. case UPB_TYPE_FLOAT:
  300. DEREF(memory, float) = 0.0;
  301. break;
  302. case UPB_TYPE_DOUBLE:
  303. DEREF(memory, double) = 0.0;
  304. break;
  305. case UPB_TYPE_BOOL:
  306. DEREF(memory, int8_t) = 0;
  307. break;
  308. case UPB_TYPE_STRING:
  309. case UPB_TYPE_BYTES:
  310. DEREF(memory, VALUE) = rb_str_new2("");
  311. rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ?
  312. kRubyString8bitEncoding : kRubyStringUtf8Encoding);
  313. break;
  314. case UPB_TYPE_MESSAGE:
  315. DEREF(memory, VALUE) = Qnil;
  316. break;
  317. case UPB_TYPE_ENUM:
  318. case UPB_TYPE_INT32:
  319. DEREF(memory, int32_t) = 0;
  320. break;
  321. case UPB_TYPE_INT64:
  322. DEREF(memory, int64_t) = 0;
  323. break;
  324. case UPB_TYPE_UINT32:
  325. DEREF(memory, uint32_t) = 0;
  326. break;
  327. case UPB_TYPE_UINT64:
  328. DEREF(memory, uint64_t) = 0;
  329. break;
  330. default:
  331. break;
  332. }
  333. }
  334. void native_slot_mark(upb_fieldtype_t type, void* memory) {
  335. switch (type) {
  336. case UPB_TYPE_STRING:
  337. case UPB_TYPE_BYTES:
  338. case UPB_TYPE_MESSAGE:
  339. rb_gc_mark(DEREF(memory, VALUE));
  340. break;
  341. default:
  342. break;
  343. }
  344. }
  345. void native_slot_dup(upb_fieldtype_t type, void* to, void* from) {
  346. memcpy(to, from, native_slot_size(type));
  347. }
  348. void native_slot_deep_copy(upb_fieldtype_t type, void* to, void* from) {
  349. switch (type) {
  350. case UPB_TYPE_STRING:
  351. case UPB_TYPE_BYTES: {
  352. VALUE from_val = DEREF(from, VALUE);
  353. DEREF(to, VALUE) = (from_val != Qnil) ?
  354. rb_funcall(from_val, rb_intern("dup"), 0) : Qnil;
  355. break;
  356. }
  357. case UPB_TYPE_MESSAGE: {
  358. VALUE from_val = DEREF(from, VALUE);
  359. DEREF(to, VALUE) = (from_val != Qnil) ?
  360. Message_deep_copy(from_val) : Qnil;
  361. break;
  362. }
  363. default:
  364. memcpy(to, from, native_slot_size(type));
  365. }
  366. }
  367. bool native_slot_eq(upb_fieldtype_t type, void* mem1, void* mem2) {
  368. switch (type) {
  369. case UPB_TYPE_STRING:
  370. case UPB_TYPE_BYTES:
  371. case UPB_TYPE_MESSAGE: {
  372. VALUE val1 = DEREF(mem1, VALUE);
  373. VALUE val2 = DEREF(mem2, VALUE);
  374. VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2);
  375. return ret == Qtrue;
  376. }
  377. default:
  378. return !memcmp(mem1, mem2, native_slot_size(type));
  379. }
  380. }
  381. // -----------------------------------------------------------------------------
  382. // Map field utilities.
  383. // -----------------------------------------------------------------------------
  384. const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) {
  385. const upb_msgdef* subdef;
  386. if (upb_fielddef_label(field) != UPB_LABEL_REPEATED ||
  387. upb_fielddef_type(field) != UPB_TYPE_MESSAGE) {
  388. return NULL;
  389. }
  390. subdef = upb_fielddef_msgsubdef(field);
  391. return upb_msgdef_mapentry(subdef) ? subdef : NULL;
  392. }
  393. const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) {
  394. const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
  395. assert(subdef);
  396. return subdef;
  397. }
  398. bool is_map_field(const upb_fielddef *field) {
  399. const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
  400. if (subdef == NULL) return false;
  401. // Map fields are a proto3 feature.
  402. // If we're using proto2 syntax we need to fallback to the repeated field.
  403. return upb_msgdef_syntax(subdef) == UPB_SYNTAX_PROTO3;
  404. }
  405. const upb_fielddef* map_field_key(const upb_fielddef* field) {
  406. const upb_msgdef* subdef = map_entry_msgdef(field);
  407. return map_entry_key(subdef);
  408. }
  409. const upb_fielddef* map_field_value(const upb_fielddef* field) {
  410. const upb_msgdef* subdef = map_entry_msgdef(field);
  411. return map_entry_value(subdef);
  412. }
  413. const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) {
  414. const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD);
  415. assert(key_field != NULL);
  416. return key_field;
  417. }
  418. const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) {
  419. const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD);
  420. assert(value_field != NULL);
  421. return value_field;
  422. }
  423. // -----------------------------------------------------------------------------
  424. // Memory layout management.
  425. // -----------------------------------------------------------------------------
  426. bool field_contains_hasbit(MessageLayout* layout,
  427. const upb_fielddef* field) {
  428. return layout->fields[upb_fielddef_index(field)].hasbit !=
  429. MESSAGE_FIELD_NO_HASBIT;
  430. }
  431. static size_t align_up_to(size_t offset, size_t granularity) {
  432. // Granularity must be a power of two.
  433. return (offset + granularity - 1) & ~(granularity - 1);
  434. }
  435. bool is_value_field(const upb_fielddef* f) {
  436. return upb_fielddef_isseq(f) || upb_fielddef_issubmsg(f) ||
  437. upb_fielddef_isstring(f);
  438. }
  439. MessageLayout* create_layout(Descriptor* desc) {
  440. const upb_msgdef *msgdef = desc->msgdef;
  441. MessageLayout* layout = ALLOC(MessageLayout);
  442. int nfields = upb_msgdef_numfields(msgdef);
  443. int noneofs = upb_msgdef_numoneofs(msgdef);
  444. upb_msg_field_iter it;
  445. upb_msg_oneof_iter oit;
  446. size_t off = 0;
  447. size_t hasbit = 0;
  448. layout->empty_template = NULL;
  449. layout->desc = desc;
  450. desc->layout = layout;
  451. layout->fields = ALLOC_N(MessageField, nfields);
  452. layout->oneofs = NULL;
  453. if (noneofs > 0) {
  454. layout->oneofs = ALLOC_N(MessageOneof, noneofs);
  455. }
  456. for (upb_msg_field_begin(&it, msgdef);
  457. !upb_msg_field_done(&it);
  458. upb_msg_field_next(&it)) {
  459. const upb_fielddef* field = upb_msg_iter_field(&it);
  460. if (upb_fielddef_haspresence(field)) {
  461. layout->fields[upb_fielddef_index(field)].hasbit = hasbit++;
  462. } else {
  463. layout->fields[upb_fielddef_index(field)].hasbit =
  464. MESSAGE_FIELD_NO_HASBIT;
  465. }
  466. }
  467. if (hasbit != 0) {
  468. off += (hasbit + 8 - 1) / 8;
  469. }
  470. off = align_up_to(off, sizeof(VALUE));
  471. layout->value_offset = off;
  472. layout->value_count = 0;
  473. // Place all (non-oneof) VALUE fields first.
  474. for (upb_msg_field_begin(&it, msgdef);
  475. !upb_msg_field_done(&it);
  476. upb_msg_field_next(&it)) {
  477. const upb_fielddef* field = upb_msg_iter_field(&it);
  478. if (upb_fielddef_containingoneof(field) || !is_value_field(field)) {
  479. continue;
  480. }
  481. layout->fields[upb_fielddef_index(field)].offset = off;
  482. off += sizeof(VALUE);
  483. layout->value_count++;
  484. }
  485. // Now place all other (non-oneof) fields.
  486. for (upb_msg_field_begin(&it, msgdef);
  487. !upb_msg_field_done(&it);
  488. upb_msg_field_next(&it)) {
  489. const upb_fielddef* field = upb_msg_iter_field(&it);
  490. size_t field_size;
  491. if (upb_fielddef_containingoneof(field) || is_value_field(field)) {
  492. continue;
  493. }
  494. // Allocate |field_size| bytes for this field in the layout.
  495. field_size = native_slot_size(upb_fielddef_type(field));
  496. // Align current offset up to |size| granularity.
  497. off = align_up_to(off, field_size);
  498. layout->fields[upb_fielddef_index(field)].offset = off;
  499. off += field_size;
  500. }
  501. // Handle oneofs now -- we iterate over oneofs specifically and allocate only
  502. // one slot per oneof.
  503. //
  504. // We assign all value slots first, then pack the 'case' fields at the end,
  505. // since in the common case (modern 64-bit platform) these are 8 bytes and 4
  506. // bytes respectively and we want to avoid alignment overhead.
  507. //
  508. // Note that we reserve 4 bytes (a uint32) per 'case' slot because the value
  509. // space for oneof cases is conceptually as wide as field tag numbers. In
  510. // practice, it's unlikely that a oneof would have more than e.g. 256 or 64K
  511. // members (8 or 16 bits respectively), so conceivably we could assign
  512. // consecutive case numbers and then pick a smaller oneof case slot size, but
  513. // the complexity to implement this indirection is probably not worthwhile.
  514. for (upb_msg_oneof_begin(&oit, msgdef);
  515. !upb_msg_oneof_done(&oit);
  516. upb_msg_oneof_next(&oit)) {
  517. const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
  518. upb_oneof_iter fit;
  519. // Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between
  520. // all fields.
  521. size_t field_size = NATIVE_SLOT_MAX_SIZE;
  522. // Align the offset.
  523. off = align_up_to(off, field_size);
  524. // Assign all fields in the oneof this same offset.
  525. for (upb_oneof_begin(&fit, oneof);
  526. !upb_oneof_done(&fit);
  527. upb_oneof_next(&fit)) {
  528. const upb_fielddef* field = upb_oneof_iter_field(&fit);
  529. layout->fields[upb_fielddef_index(field)].offset = off;
  530. layout->oneofs[upb_oneofdef_index(oneof)].offset = off;
  531. }
  532. off += field_size;
  533. }
  534. // Now the case fields.
  535. for (upb_msg_oneof_begin(&oit, msgdef);
  536. !upb_msg_oneof_done(&oit);
  537. upb_msg_oneof_next(&oit)) {
  538. const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
  539. size_t field_size = sizeof(uint32_t);
  540. // Align the offset.
  541. off = (off + field_size - 1) & ~(field_size - 1);
  542. layout->oneofs[upb_oneofdef_index(oneof)].case_offset = off;
  543. off += field_size;
  544. }
  545. layout->size = off;
  546. layout->msgdef = msgdef;
  547. // Create the empty message template.
  548. layout->empty_template = ALLOC_N(char, layout->size);
  549. memset(layout->empty_template, 0, layout->size);
  550. for (upb_msg_field_begin(&it, layout->msgdef);
  551. !upb_msg_field_done(&it);
  552. upb_msg_field_next(&it)) {
  553. layout_clear(layout, layout->empty_template, upb_msg_iter_field(&it));
  554. }
  555. }
  556. void free_layout(MessageLayout* layout) {
  557. xfree(layout->empty_template);
  558. xfree(layout->fields);
  559. xfree(layout->oneofs);
  560. xfree(layout);
  561. }
  562. VALUE field_type_class(const MessageLayout* layout, const upb_fielddef* field) {
  563. VALUE type_class = Qnil;
  564. if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
  565. VALUE submsgdesc = get_msgdef_obj(layout->desc->descriptor_pool,
  566. upb_fielddef_msgsubdef(field));
  567. type_class = Descriptor_msgclass(submsgdesc);
  568. } else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) {
  569. VALUE subenumdesc = get_enumdef_obj(layout->desc->descriptor_pool,
  570. upb_fielddef_enumsubdef(field));
  571. type_class = EnumDescriptor_enummodule(subenumdesc);
  572. }
  573. return type_class;
  574. }
  575. static void* slot_memory(MessageLayout* layout,
  576. const void* storage,
  577. const upb_fielddef* field) {
  578. return ((uint8_t *)storage) +
  579. layout->fields[upb_fielddef_index(field)].offset;
  580. }
  581. static uint32_t* slot_oneof_case(MessageLayout* layout,
  582. const void* storage,
  583. const upb_oneofdef* oneof) {
  584. return (uint32_t*)(((uint8_t*)storage) +
  585. layout->oneofs[upb_oneofdef_index(oneof)].case_offset);
  586. }
  587. uint32_t slot_read_oneof_case(MessageLayout* layout, const void* storage,
  588. const upb_oneofdef* oneof) {
  589. uint32_t* ptr = slot_oneof_case(layout, storage, oneof);
  590. return *ptr & ~ONEOF_CASE_MASK;
  591. }
  592. static void slot_set_hasbit(MessageLayout* layout,
  593. const void* storage,
  594. const upb_fielddef* field) {
  595. size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
  596. assert(hasbit != MESSAGE_FIELD_NO_HASBIT);
  597. ((uint8_t*)storage)[hasbit / 8] |= 1 << (hasbit % 8);
  598. }
  599. static void slot_clear_hasbit(MessageLayout* layout,
  600. const void* storage,
  601. const upb_fielddef* field) {
  602. size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
  603. assert(hasbit != MESSAGE_FIELD_NO_HASBIT);
  604. ((uint8_t*)storage)[hasbit / 8] &= ~(1 << (hasbit % 8));
  605. }
  606. static bool slot_is_hasbit_set(MessageLayout* layout,
  607. const void* storage,
  608. const upb_fielddef* field) {
  609. size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
  610. if (hasbit == MESSAGE_FIELD_NO_HASBIT) {
  611. return false;
  612. }
  613. return DEREF_OFFSET(
  614. (uint8_t*)storage, hasbit / 8, char) & (1 << (hasbit % 8));
  615. }
  616. VALUE layout_has(MessageLayout* layout,
  617. const void* storage,
  618. const upb_fielddef* field) {
  619. assert(field_contains_hasbit(layout, field));
  620. return slot_is_hasbit_set(layout, storage, field) ? Qtrue : Qfalse;
  621. }
  622. void layout_clear(MessageLayout* layout,
  623. const void* storage,
  624. const upb_fielddef* field) {
  625. void* memory = slot_memory(layout, storage, field);
  626. const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
  627. if (field_contains_hasbit(layout, field)) {
  628. slot_clear_hasbit(layout, storage, field);
  629. }
  630. if (oneof) {
  631. uint32_t* oneof_case = slot_oneof_case(layout, storage, oneof);
  632. memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
  633. *oneof_case = ONEOF_CASE_NONE;
  634. } else if (is_map_field(field)) {
  635. VALUE map = Qnil;
  636. const upb_fielddef* key_field = map_field_key(field);
  637. const upb_fielddef* value_field = map_field_value(field);
  638. VALUE type_class = field_type_class(layout, value_field);
  639. if (type_class != Qnil) {
  640. VALUE args[3] = {
  641. fieldtype_to_ruby(upb_fielddef_type(key_field)),
  642. fieldtype_to_ruby(upb_fielddef_type(value_field)),
  643. type_class,
  644. };
  645. map = rb_class_new_instance(3, args, cMap);
  646. } else {
  647. VALUE args[2] = {
  648. fieldtype_to_ruby(upb_fielddef_type(key_field)),
  649. fieldtype_to_ruby(upb_fielddef_type(value_field)),
  650. };
  651. map = rb_class_new_instance(2, args, cMap);
  652. }
  653. DEREF(memory, VALUE) = map;
  654. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  655. VALUE ary = Qnil;
  656. VALUE type_class = field_type_class(layout, field);
  657. if (type_class != Qnil) {
  658. VALUE args[2] = {
  659. fieldtype_to_ruby(upb_fielddef_type(field)),
  660. type_class,
  661. };
  662. ary = rb_class_new_instance(2, args, cRepeatedField);
  663. } else {
  664. VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) };
  665. ary = rb_class_new_instance(1, args, cRepeatedField);
  666. }
  667. DEREF(memory, VALUE) = ary;
  668. } else {
  669. native_slot_set(upb_fielddef_name(field), upb_fielddef_type(field),
  670. field_type_class(layout, field), memory,
  671. layout_get_default(field));
  672. }
  673. }
  674. VALUE layout_get_default(const upb_fielddef *field) {
  675. switch (upb_fielddef_type(field)) {
  676. case UPB_TYPE_FLOAT: return DBL2NUM(upb_fielddef_defaultfloat(field));
  677. case UPB_TYPE_DOUBLE: return DBL2NUM(upb_fielddef_defaultdouble(field));
  678. case UPB_TYPE_BOOL:
  679. return upb_fielddef_defaultbool(field) ? Qtrue : Qfalse;
  680. case UPB_TYPE_MESSAGE: return Qnil;
  681. case UPB_TYPE_ENUM: {
  682. const upb_enumdef *enumdef = upb_fielddef_enumsubdef(field);
  683. int32_t num = upb_fielddef_defaultint32(field);
  684. const char *label = upb_enumdef_iton(enumdef, num);
  685. if (label) {
  686. return ID2SYM(rb_intern(label));
  687. } else {
  688. return INT2NUM(num);
  689. }
  690. }
  691. case UPB_TYPE_INT32: return INT2NUM(upb_fielddef_defaultint32(field));
  692. case UPB_TYPE_INT64: return LL2NUM(upb_fielddef_defaultint64(field));;
  693. case UPB_TYPE_UINT32: return UINT2NUM(upb_fielddef_defaultuint32(field));
  694. case UPB_TYPE_UINT64: return ULL2NUM(upb_fielddef_defaultuint64(field));
  695. case UPB_TYPE_STRING:
  696. case UPB_TYPE_BYTES: {
  697. size_t size;
  698. const char *str = upb_fielddef_defaultstr(field, &size);
  699. return get_frozen_string(str, size,
  700. upb_fielddef_type(field) == UPB_TYPE_BYTES);
  701. }
  702. default: return Qnil;
  703. }
  704. }
  705. VALUE layout_get(MessageLayout* layout,
  706. const void* storage,
  707. const upb_fielddef* field) {
  708. void* memory = slot_memory(layout, storage, field);
  709. const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
  710. bool field_set;
  711. if (field_contains_hasbit(layout, field)) {
  712. field_set = slot_is_hasbit_set(layout, storage, field);
  713. } else {
  714. field_set = true;
  715. }
  716. if (oneof) {
  717. uint32_t oneof_case = slot_read_oneof_case(layout, storage, oneof);
  718. if (oneof_case != upb_fielddef_number(field)) {
  719. return layout_get_default(field);
  720. }
  721. return native_slot_get(upb_fielddef_type(field),
  722. field_type_class(layout, field), memory);
  723. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  724. return *((VALUE *)memory);
  725. } else if (!field_set) {
  726. return layout_get_default(field);
  727. } else {
  728. return native_slot_get(upb_fielddef_type(field),
  729. field_type_class(layout, field), memory);
  730. }
  731. }
  732. static void check_repeated_field_type(const MessageLayout* layout, VALUE val,
  733. const upb_fielddef* field) {
  734. RepeatedField* self;
  735. assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED);
  736. if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
  737. RTYPEDDATA_TYPE(val) != &RepeatedField_type) {
  738. rb_raise(cTypeError, "Expected repeated field array");
  739. }
  740. self = ruby_to_RepeatedField(val);
  741. if (self->field_type != upb_fielddef_type(field)) {
  742. rb_raise(cTypeError, "Repeated field array has wrong element type");
  743. }
  744. if (self->field_type_class != field_type_class(layout, field)) {
  745. rb_raise(cTypeError, "Repeated field array has wrong message/enum class");
  746. }
  747. }
  748. static void check_map_field_type(const MessageLayout* layout, VALUE val,
  749. const upb_fielddef* field) {
  750. const upb_fielddef* key_field = map_field_key(field);
  751. const upb_fielddef* value_field = map_field_value(field);
  752. Map* self;
  753. if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
  754. RTYPEDDATA_TYPE(val) != &Map_type) {
  755. rb_raise(cTypeError, "Expected Map instance");
  756. }
  757. self = ruby_to_Map(val);
  758. if (self->key_type != upb_fielddef_type(key_field)) {
  759. rb_raise(cTypeError, "Map key type does not match field's key type");
  760. }
  761. if (self->value_type != upb_fielddef_type(value_field)) {
  762. rb_raise(cTypeError, "Map value type does not match field's value type");
  763. }
  764. if (self->value_type_class != field_type_class(layout, value_field)) {
  765. rb_raise(cTypeError, "Map value type has wrong message/enum class");
  766. }
  767. }
  768. void layout_set(MessageLayout* layout,
  769. void* storage,
  770. const upb_fielddef* field,
  771. VALUE val) {
  772. void* memory = slot_memory(layout, storage, field);
  773. const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
  774. if (oneof) {
  775. uint32_t* oneof_case = slot_oneof_case(layout, storage, oneof);
  776. if (val == Qnil) {
  777. // Assigning nil to a oneof field clears the oneof completely.
  778. *oneof_case = ONEOF_CASE_NONE;
  779. memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
  780. } else {
  781. // The transition between field types for a single oneof (union) slot is
  782. // somewhat complex because we need to ensure that a GC triggered at any
  783. // point by a call into the Ruby VM sees a valid state for this field and
  784. // does not either go off into the weeds (following what it thinks is a
  785. // VALUE but is actually a different field type) or miss an object (seeing
  786. // what it thinks is a primitive field but is actually a VALUE for the new
  787. // field type).
  788. //
  789. // In order for the transition to be safe, the oneof case slot must be in
  790. // sync with the value slot whenever the Ruby VM has been called. Thus, we
  791. // use native_slot_set_value_and_case(), which ensures that both the value
  792. // and case number are altered atomically (w.r.t. the Ruby VM).
  793. uint32_t case_value = upb_fielddef_number(field);
  794. if (upb_fielddef_issubmsg(field) || upb_fielddef_isstring(field)) {
  795. case_value |= ONEOF_CASE_MASK;
  796. }
  797. native_slot_set_value_and_case(
  798. upb_fielddef_name(field), upb_fielddef_type(field),
  799. field_type_class(layout, field), memory, val, oneof_case, case_value);
  800. }
  801. } else if (is_map_field(field)) {
  802. check_map_field_type(layout, val, field);
  803. DEREF(memory, VALUE) = val;
  804. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  805. check_repeated_field_type(layout, val, field);
  806. DEREF(memory, VALUE) = val;
  807. } else {
  808. native_slot_set(upb_fielddef_name(field), upb_fielddef_type(field),
  809. field_type_class(layout, field), memory, val);
  810. }
  811. if (layout->fields[upb_fielddef_index(field)].hasbit !=
  812. MESSAGE_FIELD_NO_HASBIT) {
  813. slot_set_hasbit(layout, storage, field);
  814. }
  815. }
  816. void layout_init(MessageLayout* layout, void* storage) {
  817. memcpy(storage, layout->empty_template, layout->size);
  818. /*
  819. upb_msg_field_iter it;
  820. for (upb_msg_field_begin(&it, layout->msgdef);
  821. !upb_msg_field_done(&it);
  822. upb_msg_field_next(&it)) {
  823. layout_clear(layout, storage, upb_msg_iter_field(&it));
  824. }
  825. */
  826. }
  827. void layout_mark(MessageLayout* layout, void* storage) {
  828. VALUE* values = (VALUE*)CHARPTR_AT(storage, layout->value_offset);
  829. int noneofs = upb_msgdef_numoneofs(layout->msgdef);
  830. int i;
  831. for (i = 0; i < layout->value_count; i++) {
  832. rb_gc_mark(values[i]);
  833. }
  834. for (i = 0; i < noneofs; i++) {
  835. MessageOneof* oneof = &layout->oneofs[i];
  836. uint32_t* case_ptr = (uint32_t*)CHARPTR_AT(storage, oneof->case_offset);
  837. if (*case_ptr & ONEOF_CASE_MASK) {
  838. rb_gc_mark(DEREF_OFFSET(storage, oneof->offset, VALUE));
  839. }
  840. }
  841. }
  842. void layout_dup(MessageLayout* layout, void* to, void* from) {
  843. upb_msg_field_iter it;
  844. for (upb_msg_field_begin(&it, layout->msgdef);
  845. !upb_msg_field_done(&it);
  846. upb_msg_field_next(&it)) {
  847. const upb_fielddef* field = upb_msg_iter_field(&it);
  848. const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
  849. void* to_memory = slot_memory(layout, to, field);
  850. void* from_memory = slot_memory(layout, from, field);
  851. if (oneof) {
  852. uint32_t* to_oneof_case = slot_oneof_case(layout, to, oneof);
  853. uint32_t* from_oneof_case = slot_oneof_case(layout, from, oneof);
  854. if (slot_read_oneof_case(layout, from, oneof) ==
  855. upb_fielddef_number(field)) {
  856. *to_oneof_case = *from_oneof_case;
  857. native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
  858. }
  859. } else if (is_map_field(field)) {
  860. DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE));
  861. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  862. DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE));
  863. } else {
  864. if (field_contains_hasbit(layout, field)) {
  865. if (!slot_is_hasbit_set(layout, from, field)) continue;
  866. slot_set_hasbit(layout, to, field);
  867. }
  868. native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
  869. }
  870. }
  871. }
  872. void layout_deep_copy(MessageLayout* layout, void* to, void* from) {
  873. upb_msg_field_iter it;
  874. for (upb_msg_field_begin(&it, layout->msgdef);
  875. !upb_msg_field_done(&it);
  876. upb_msg_field_next(&it)) {
  877. const upb_fielddef* field = upb_msg_iter_field(&it);
  878. const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
  879. void* to_memory = slot_memory(layout, to, field);
  880. void* from_memory = slot_memory(layout, from, field);
  881. if (oneof) {
  882. uint32_t* to_oneof_case = slot_oneof_case(layout, to, oneof);
  883. uint32_t* from_oneof_case = slot_oneof_case(layout, from, oneof);
  884. if (slot_read_oneof_case(layout, from, oneof) ==
  885. upb_fielddef_number(field)) {
  886. *to_oneof_case = *from_oneof_case;
  887. native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
  888. }
  889. } else if (is_map_field(field)) {
  890. DEREF(to_memory, VALUE) =
  891. Map_deep_copy(DEREF(from_memory, VALUE));
  892. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  893. DEREF(to_memory, VALUE) =
  894. RepeatedField_deep_copy(DEREF(from_memory, VALUE));
  895. } else {
  896. if (field_contains_hasbit(layout, field)) {
  897. if (!slot_is_hasbit_set(layout, from, field)) continue;
  898. slot_set_hasbit(layout, to, field);
  899. }
  900. native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
  901. }
  902. }
  903. }
  904. VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) {
  905. upb_msg_field_iter it;
  906. for (upb_msg_field_begin(&it, layout->msgdef);
  907. !upb_msg_field_done(&it);
  908. upb_msg_field_next(&it)) {
  909. const upb_fielddef* field = upb_msg_iter_field(&it);
  910. const upb_oneofdef* oneof = upb_fielddef_containingoneof(field);
  911. void* msg1_memory = slot_memory(layout, msg1, field);
  912. void* msg2_memory = slot_memory(layout, msg2, field);
  913. if (oneof) {
  914. uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, oneof);
  915. uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, oneof);
  916. if (*msg1_oneof_case != *msg2_oneof_case ||
  917. (slot_read_oneof_case(layout, msg1, oneof) ==
  918. upb_fielddef_number(field) &&
  919. !native_slot_eq(upb_fielddef_type(field), msg1_memory,
  920. msg2_memory))) {
  921. return Qfalse;
  922. }
  923. } else if (is_map_field(field)) {
  924. if (!Map_eq(DEREF(msg1_memory, VALUE),
  925. DEREF(msg2_memory, VALUE))) {
  926. return Qfalse;
  927. }
  928. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  929. if (!RepeatedField_eq(DEREF(msg1_memory, VALUE),
  930. DEREF(msg2_memory, VALUE))) {
  931. return Qfalse;
  932. }
  933. } else {
  934. if (slot_is_hasbit_set(layout, msg1, field) !=
  935. slot_is_hasbit_set(layout, msg2, field) ||
  936. !native_slot_eq(upb_fielddef_type(field), msg1_memory, msg2_memory)) {
  937. return Qfalse;
  938. }
  939. }
  940. }
  941. return Qtrue;
  942. }
  943. VALUE layout_hash(MessageLayout* layout, void* storage) {
  944. upb_msg_field_iter it;
  945. st_index_t h = rb_hash_start(0);
  946. VALUE hash_sym = rb_intern("hash");
  947. for (upb_msg_field_begin(&it, layout->msgdef);
  948. !upb_msg_field_done(&it);
  949. upb_msg_field_next(&it)) {
  950. const upb_fielddef* field = upb_msg_iter_field(&it);
  951. VALUE field_val = layout_get(layout, storage, field);
  952. h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0)));
  953. }
  954. h = rb_hash_end(h);
  955. return INT2FIX(h);
  956. }
  957. VALUE layout_inspect(MessageLayout* layout, void* storage) {
  958. VALUE str = rb_str_new2("");
  959. upb_msg_field_iter it;
  960. bool first = true;
  961. for (upb_msg_field_begin(&it, layout->msgdef);
  962. !upb_msg_field_done(&it);
  963. upb_msg_field_next(&it)) {
  964. const upb_fielddef* field = upb_msg_iter_field(&it);
  965. VALUE field_val = layout_get(layout, storage, field);
  966. if (!first) {
  967. str = rb_str_cat2(str, ", ");
  968. } else {
  969. first = false;
  970. }
  971. str = rb_str_cat2(str, upb_fielddef_name(field));
  972. str = rb_str_cat2(str, ": ");
  973. str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0));
  974. }
  975. return str;
  976. }