storage.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
  1. // Protocol Buffers - Google's data interchange format
  2. // Copyright 2014 Google Inc. All rights reserved.
  3. // https://developers.google.com/protocol-buffers/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are
  7. // met:
  8. //
  9. // * Redistributions of source code must retain the above copyright
  10. // notice, this list of conditions and the following disclaimer.
  11. // * Redistributions in binary form must reproduce the above
  12. // copyright notice, this list of conditions and the following disclaimer
  13. // in the documentation and/or other materials provided with the
  14. // distribution.
  15. // * Neither the name of Google Inc. nor the names of its
  16. // contributors may be used to endorse or promote products derived from
  17. // this software without specific prior written permission.
  18. //
  19. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  20. // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  21. // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  22. // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  23. // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  24. // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  25. // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  26. // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  27. // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  28. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  29. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30. #include "protobuf.h"
  31. #include <math.h>
  32. #include <ruby/encoding.h>
  33. // -----------------------------------------------------------------------------
  34. // Ruby <-> native slot management.
  35. // -----------------------------------------------------------------------------
  36. #define CHARPTR_AT(msg, ofs) ((char*)msg + ofs)
  37. #define DEREF_OFFSET(msg, ofs, type) *(type*)CHARPTR_AT(msg, ofs)
  38. #define DEREF(memory, type) *(type*)(memory)
  39. size_t native_slot_size(upb_fieldtype_t type) {
  40. switch (type) {
  41. case UPB_TYPE_FLOAT: return 4;
  42. case UPB_TYPE_DOUBLE: return 8;
  43. case UPB_TYPE_BOOL: return 1;
  44. case UPB_TYPE_STRING: return sizeof(VALUE);
  45. case UPB_TYPE_BYTES: return sizeof(VALUE);
  46. case UPB_TYPE_MESSAGE: return sizeof(VALUE);
  47. case UPB_TYPE_ENUM: return 4;
  48. case UPB_TYPE_INT32: return 4;
  49. case UPB_TYPE_INT64: return 8;
  50. case UPB_TYPE_UINT32: return 4;
  51. case UPB_TYPE_UINT64: return 8;
  52. default: return 0;
  53. }
  54. }
  55. static bool is_ruby_num(VALUE value) {
  56. return (TYPE(value) == T_FLOAT ||
  57. TYPE(value) == T_FIXNUM ||
  58. TYPE(value) == T_BIGNUM);
  59. }
  60. void native_slot_check_int_range_precision(const char* name, upb_fieldtype_t type, VALUE val) {
  61. if (!is_ruby_num(val)) {
  62. rb_raise(cTypeError, "Expected number type for integral field '%s' (given %s).",
  63. name, rb_class2name(CLASS_OF(val)));
  64. }
  65. // NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper
  66. // bound; we just need to do precision checks (i.e., disallow rounding) and
  67. // check for < 0 on unsigned types.
  68. if (TYPE(val) == T_FLOAT) {
  69. double dbl_val = NUM2DBL(val);
  70. if (floor(dbl_val) != dbl_val) {
  71. rb_raise(rb_eRangeError,
  72. "Non-integral floating point value assigned to integer field '%s' (given %s).",
  73. name, rb_class2name(CLASS_OF(val)));
  74. }
  75. }
  76. if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) {
  77. if (NUM2DBL(val) < 0) {
  78. rb_raise(rb_eRangeError,
  79. "Assigning negative value to unsigned integer field '%s' (given %s).",
  80. name, rb_class2name(CLASS_OF(val)));
  81. }
  82. }
  83. }
  84. VALUE native_slot_encode_and_freeze_string(upb_fieldtype_t type, VALUE value) {
  85. rb_encoding* desired_encoding = (type == UPB_TYPE_STRING) ?
  86. kRubyStringUtf8Encoding : kRubyString8bitEncoding;
  87. VALUE desired_encoding_value = rb_enc_from_encoding(desired_encoding);
  88. if (rb_obj_encoding(value) != desired_encoding_value || !OBJ_FROZEN(value)) {
  89. // Note: this will not duplicate underlying string data unless necessary.
  90. value = rb_str_encode(value, desired_encoding_value, 0, Qnil);
  91. if (type == UPB_TYPE_STRING &&
  92. rb_enc_str_coderange(value) == ENC_CODERANGE_BROKEN) {
  93. rb_raise(rb_eEncodingError, "String is invalid UTF-8");
  94. }
  95. // Ensure the data remains valid. Since we called #encode a moment ago,
  96. // this does not freeze the string the user assigned.
  97. rb_obj_freeze(value);
  98. }
  99. return value;
  100. }
  101. void native_slot_set(const char* name,
  102. upb_fieldtype_t type, VALUE type_class,
  103. void* memory, VALUE value) {
  104. native_slot_set_value_and_case(name, type, type_class, memory, value, NULL, 0);
  105. }
  106. void native_slot_set_value_and_case(const char* name,
  107. upb_fieldtype_t type, VALUE type_class,
  108. void* memory, VALUE value,
  109. uint32_t* case_memory,
  110. uint32_t case_number) {
  111. // Note that in order to atomically change the value in memory and the case
  112. // value (w.r.t. Ruby VM calls), we must set the value at |memory| only after
  113. // all Ruby VM calls are complete. The case is then set at the bottom of this
  114. // function.
  115. switch (type) {
  116. case UPB_TYPE_FLOAT:
  117. if (!is_ruby_num(value)) {
  118. rb_raise(cTypeError, "Expected number type for float field '%s' (given %s).",
  119. name, rb_class2name(CLASS_OF(value)));
  120. }
  121. DEREF(memory, float) = NUM2DBL(value);
  122. break;
  123. case UPB_TYPE_DOUBLE:
  124. if (!is_ruby_num(value)) {
  125. rb_raise(cTypeError, "Expected number type for double field '%s' (given %s).",
  126. name, rb_class2name(CLASS_OF(value)));
  127. }
  128. DEREF(memory, double) = NUM2DBL(value);
  129. break;
  130. case UPB_TYPE_BOOL: {
  131. int8_t val = -1;
  132. if (value == Qtrue) {
  133. val = 1;
  134. } else if (value == Qfalse) {
  135. val = 0;
  136. } else {
  137. rb_raise(cTypeError, "Invalid argument for boolean field '%s' (given %s).",
  138. name, rb_class2name(CLASS_OF(value)));
  139. }
  140. DEREF(memory, int8_t) = val;
  141. break;
  142. }
  143. case UPB_TYPE_STRING:
  144. if (CLASS_OF(value) == rb_cSymbol) {
  145. value = rb_funcall(value, rb_intern("to_s"), 0);
  146. } else if (CLASS_OF(value) != rb_cString) {
  147. rb_raise(cTypeError, "Invalid argument for string field '%s' (given %s).",
  148. name, rb_class2name(CLASS_OF(value)));
  149. }
  150. DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
  151. break;
  152. case UPB_TYPE_BYTES: {
  153. if (CLASS_OF(value) != rb_cString) {
  154. rb_raise(cTypeError, "Invalid argument for bytes field '%s' (given %s).",
  155. name, rb_class2name(CLASS_OF(value)));
  156. }
  157. DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
  158. break;
  159. }
  160. case UPB_TYPE_MESSAGE: {
  161. if (CLASS_OF(value) == CLASS_OF(Qnil)) {
  162. value = Qnil;
  163. } else if (CLASS_OF(value) != type_class) {
  164. // check for possible implicit conversions
  165. VALUE converted_value = Qnil;
  166. const char* field_type_name = rb_class2name(type_class);
  167. if (strcmp(field_type_name, "Google::Protobuf::Timestamp") == 0 &&
  168. rb_obj_is_kind_of(value, rb_cTime)) {
  169. // Time -> Google::Protobuf::Timestamp
  170. VALUE hash = rb_hash_new();
  171. rb_hash_aset(hash, rb_str_new2("seconds"),
  172. rb_funcall(value, rb_intern("to_i"), 0));
  173. rb_hash_aset(hash, rb_str_new2("nanos"),
  174. rb_funcall(value, rb_intern("nsec"), 0));
  175. {
  176. VALUE args[1] = {hash};
  177. converted_value = rb_class_new_instance(1, args, type_class);
  178. }
  179. } else if (strcmp(field_type_name, "Google::Protobuf::Duration") == 0 &&
  180. rb_obj_is_kind_of(value, rb_cNumeric)) {
  181. // Numeric -> Google::Protobuf::Duration
  182. VALUE hash = rb_hash_new();
  183. rb_hash_aset(hash, rb_str_new2("seconds"),
  184. rb_funcall(value, rb_intern("to_i"), 0));
  185. {
  186. VALUE n_value =
  187. rb_funcall(value, rb_intern("remainder"), 1, INT2NUM(1));
  188. n_value =
  189. rb_funcall(n_value, rb_intern("*"), 1, INT2NUM(1000000000));
  190. n_value = rb_funcall(n_value, rb_intern("round"), 0);
  191. rb_hash_aset(hash, rb_str_new2("nanos"), n_value);
  192. }
  193. {
  194. VALUE args[1] = { hash };
  195. converted_value = rb_class_new_instance(1, args, type_class);
  196. }
  197. }
  198. // raise if no suitable conversaion could be found
  199. if (converted_value == Qnil) {
  200. rb_raise(cTypeError,
  201. "Invalid type %s to assign to submessage field '%s'.",
  202. rb_class2name(CLASS_OF(value)), name);
  203. } else {
  204. value = converted_value;
  205. }
  206. }
  207. DEREF(memory, VALUE) = value;
  208. break;
  209. }
  210. case UPB_TYPE_ENUM: {
  211. int32_t int_val = 0;
  212. if (TYPE(value) == T_STRING) {
  213. value = rb_funcall(value, rb_intern("to_sym"), 0);
  214. } else if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) {
  215. rb_raise(cTypeError,
  216. "Expected number or symbol type for enum field '%s'.", name);
  217. }
  218. if (TYPE(value) == T_SYMBOL) {
  219. // Ensure that the given symbol exists in the enum module.
  220. VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value);
  221. if (lookup == Qnil) {
  222. rb_raise(rb_eRangeError, "Unknown symbol value for enum field '%s'.", name);
  223. } else {
  224. int_val = NUM2INT(lookup);
  225. }
  226. } else {
  227. native_slot_check_int_range_precision(name, UPB_TYPE_INT32, value);
  228. int_val = NUM2INT(value);
  229. }
  230. DEREF(memory, int32_t) = int_val;
  231. break;
  232. }
  233. case UPB_TYPE_INT32:
  234. case UPB_TYPE_INT64:
  235. case UPB_TYPE_UINT32:
  236. case UPB_TYPE_UINT64:
  237. native_slot_check_int_range_precision(name, type, value);
  238. switch (type) {
  239. case UPB_TYPE_INT32:
  240. DEREF(memory, int32_t) = NUM2INT(value);
  241. break;
  242. case UPB_TYPE_INT64:
  243. DEREF(memory, int64_t) = NUM2LL(value);
  244. break;
  245. case UPB_TYPE_UINT32:
  246. DEREF(memory, uint32_t) = NUM2UINT(value);
  247. break;
  248. case UPB_TYPE_UINT64:
  249. DEREF(memory, uint64_t) = NUM2ULL(value);
  250. break;
  251. default:
  252. break;
  253. }
  254. break;
  255. default:
  256. break;
  257. }
  258. if (case_memory != NULL) {
  259. *case_memory = case_number;
  260. }
  261. }
  262. VALUE native_slot_get(upb_fieldtype_t type,
  263. VALUE type_class,
  264. const void* memory) {
  265. switch (type) {
  266. case UPB_TYPE_FLOAT:
  267. return DBL2NUM(DEREF(memory, float));
  268. case UPB_TYPE_DOUBLE:
  269. return DBL2NUM(DEREF(memory, double));
  270. case UPB_TYPE_BOOL:
  271. return DEREF(memory, int8_t) ? Qtrue : Qfalse;
  272. case UPB_TYPE_STRING:
  273. case UPB_TYPE_BYTES:
  274. case UPB_TYPE_MESSAGE:
  275. return DEREF(memory, VALUE);
  276. case UPB_TYPE_ENUM: {
  277. int32_t val = DEREF(memory, int32_t);
  278. VALUE symbol = enum_lookup(type_class, INT2NUM(val));
  279. if (symbol == Qnil) {
  280. return INT2NUM(val);
  281. } else {
  282. return symbol;
  283. }
  284. }
  285. case UPB_TYPE_INT32:
  286. return INT2NUM(DEREF(memory, int32_t));
  287. case UPB_TYPE_INT64:
  288. return LL2NUM(DEREF(memory, int64_t));
  289. case UPB_TYPE_UINT32:
  290. return UINT2NUM(DEREF(memory, uint32_t));
  291. case UPB_TYPE_UINT64:
  292. return ULL2NUM(DEREF(memory, uint64_t));
  293. default:
  294. return Qnil;
  295. }
  296. }
  297. void native_slot_init(upb_fieldtype_t type, void* memory) {
  298. switch (type) {
  299. case UPB_TYPE_FLOAT:
  300. DEREF(memory, float) = 0.0;
  301. break;
  302. case UPB_TYPE_DOUBLE:
  303. DEREF(memory, double) = 0.0;
  304. break;
  305. case UPB_TYPE_BOOL:
  306. DEREF(memory, int8_t) = 0;
  307. break;
  308. case UPB_TYPE_STRING:
  309. case UPB_TYPE_BYTES:
  310. DEREF(memory, VALUE) = rb_str_new2("");
  311. rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ?
  312. kRubyString8bitEncoding : kRubyStringUtf8Encoding);
  313. break;
  314. case UPB_TYPE_MESSAGE:
  315. DEREF(memory, VALUE) = Qnil;
  316. break;
  317. case UPB_TYPE_ENUM:
  318. case UPB_TYPE_INT32:
  319. DEREF(memory, int32_t) = 0;
  320. break;
  321. case UPB_TYPE_INT64:
  322. DEREF(memory, int64_t) = 0;
  323. break;
  324. case UPB_TYPE_UINT32:
  325. DEREF(memory, uint32_t) = 0;
  326. break;
  327. case UPB_TYPE_UINT64:
  328. DEREF(memory, uint64_t) = 0;
  329. break;
  330. default:
  331. break;
  332. }
  333. }
  334. void native_slot_mark(upb_fieldtype_t type, void* memory) {
  335. switch (type) {
  336. case UPB_TYPE_STRING:
  337. case UPB_TYPE_BYTES:
  338. case UPB_TYPE_MESSAGE:
  339. rb_gc_mark(DEREF(memory, VALUE));
  340. break;
  341. default:
  342. break;
  343. }
  344. }
  345. void native_slot_dup(upb_fieldtype_t type, void* to, void* from) {
  346. memcpy(to, from, native_slot_size(type));
  347. }
  348. void native_slot_deep_copy(upb_fieldtype_t type, void* to, void* from) {
  349. switch (type) {
  350. case UPB_TYPE_STRING:
  351. case UPB_TYPE_BYTES: {
  352. VALUE from_val = DEREF(from, VALUE);
  353. DEREF(to, VALUE) = (from_val != Qnil) ?
  354. rb_funcall(from_val, rb_intern("dup"), 0) : Qnil;
  355. break;
  356. }
  357. case UPB_TYPE_MESSAGE: {
  358. VALUE from_val = DEREF(from, VALUE);
  359. DEREF(to, VALUE) = (from_val != Qnil) ?
  360. Message_deep_copy(from_val) : Qnil;
  361. break;
  362. }
  363. default:
  364. memcpy(to, from, native_slot_size(type));
  365. }
  366. }
  367. bool native_slot_eq(upb_fieldtype_t type, void* mem1, void* mem2) {
  368. switch (type) {
  369. case UPB_TYPE_STRING:
  370. case UPB_TYPE_BYTES:
  371. case UPB_TYPE_MESSAGE: {
  372. VALUE val1 = DEREF(mem1, VALUE);
  373. VALUE val2 = DEREF(mem2, VALUE);
  374. VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2);
  375. return ret == Qtrue;
  376. }
  377. default:
  378. return !memcmp(mem1, mem2, native_slot_size(type));
  379. }
  380. }
  381. // -----------------------------------------------------------------------------
  382. // Map field utilities.
  383. // -----------------------------------------------------------------------------
  384. const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) {
  385. const upb_msgdef* subdef;
  386. if (upb_fielddef_label(field) != UPB_LABEL_REPEATED ||
  387. upb_fielddef_type(field) != UPB_TYPE_MESSAGE) {
  388. return NULL;
  389. }
  390. subdef = upb_fielddef_msgsubdef(field);
  391. return upb_msgdef_mapentry(subdef) ? subdef : NULL;
  392. }
  393. const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) {
  394. const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
  395. assert(subdef);
  396. return subdef;
  397. }
  398. bool is_map_field(const upb_fielddef *field) {
  399. const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
  400. if (subdef == NULL) return false;
  401. // Map fields are a proto3 feature.
  402. // If we're using proto2 syntax we need to fallback to the repeated field.
  403. return upb_msgdef_syntax(subdef) == UPB_SYNTAX_PROTO3;
  404. }
  405. const upb_fielddef* map_field_key(const upb_fielddef* field) {
  406. const upb_msgdef* subdef = map_entry_msgdef(field);
  407. return map_entry_key(subdef);
  408. }
  409. const upb_fielddef* map_field_value(const upb_fielddef* field) {
  410. const upb_msgdef* subdef = map_entry_msgdef(field);
  411. return map_entry_value(subdef);
  412. }
  413. const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) {
  414. const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD);
  415. assert(key_field != NULL);
  416. return key_field;
  417. }
  418. const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) {
  419. const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD);
  420. assert(value_field != NULL);
  421. return value_field;
  422. }
  423. // -----------------------------------------------------------------------------
  424. // Memory layout management.
  425. // -----------------------------------------------------------------------------
  426. bool field_contains_hasbit(MessageLayout* layout,
  427. const upb_fielddef* field) {
  428. return layout->fields[upb_fielddef_index(field)].hasbit !=
  429. MESSAGE_FIELD_NO_HASBIT;
  430. }
  431. static size_t align_up_to(size_t offset, size_t granularity) {
  432. // Granularity must be a power of two.
  433. return (offset + granularity - 1) & ~(granularity - 1);
  434. }
  435. MessageLayout* create_layout(const Descriptor* desc) {
  436. const upb_msgdef *msgdef = desc->msgdef;
  437. MessageLayout* layout = ALLOC(MessageLayout);
  438. int nfields = upb_msgdef_numfields(msgdef);
  439. upb_msg_field_iter it;
  440. upb_msg_oneof_iter oit;
  441. size_t off = 0;
  442. size_t hasbit = 0;
  443. layout->desc = desc;
  444. layout->fields = ALLOC_N(MessageField, nfields);
  445. for (upb_msg_field_begin(&it, msgdef);
  446. !upb_msg_field_done(&it);
  447. upb_msg_field_next(&it)) {
  448. const upb_fielddef* field = upb_msg_iter_field(&it);
  449. if (upb_fielddef_haspresence(field)) {
  450. layout->fields[upb_fielddef_index(field)].hasbit = hasbit++;
  451. } else {
  452. layout->fields[upb_fielddef_index(field)].hasbit =
  453. MESSAGE_FIELD_NO_HASBIT;
  454. }
  455. }
  456. if (hasbit != 0) {
  457. off += (hasbit + 8 - 1) / 8;
  458. }
  459. for (upb_msg_field_begin(&it, msgdef);
  460. !upb_msg_field_done(&it);
  461. upb_msg_field_next(&it)) {
  462. const upb_fielddef* field = upb_msg_iter_field(&it);
  463. size_t field_size;
  464. if (upb_fielddef_containingoneof(field)) {
  465. // Oneofs are handled separately below.
  466. continue;
  467. }
  468. // Allocate |field_size| bytes for this field in the layout.
  469. field_size = 0;
  470. if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  471. field_size = sizeof(VALUE);
  472. } else {
  473. field_size = native_slot_size(upb_fielddef_type(field));
  474. }
  475. // Align current offset up to |size| granularity.
  476. off = align_up_to(off, field_size);
  477. layout->fields[upb_fielddef_index(field)].offset = off;
  478. layout->fields[upb_fielddef_index(field)].case_offset =
  479. MESSAGE_FIELD_NO_CASE;
  480. off += field_size;
  481. }
  482. // Handle oneofs now -- we iterate over oneofs specifically and allocate only
  483. // one slot per oneof.
  484. //
  485. // We assign all value slots first, then pack the 'case' fields at the end,
  486. // since in the common case (modern 64-bit platform) these are 8 bytes and 4
  487. // bytes respectively and we want to avoid alignment overhead.
  488. //
  489. // Note that we reserve 4 bytes (a uint32) per 'case' slot because the value
  490. // space for oneof cases is conceptually as wide as field tag numbers. In
  491. // practice, it's unlikely that a oneof would have more than e.g. 256 or 64K
  492. // members (8 or 16 bits respectively), so conceivably we could assign
  493. // consecutive case numbers and then pick a smaller oneof case slot size, but
  494. // the complexity to implement this indirection is probably not worthwhile.
  495. for (upb_msg_oneof_begin(&oit, msgdef);
  496. !upb_msg_oneof_done(&oit);
  497. upb_msg_oneof_next(&oit)) {
  498. const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
  499. upb_oneof_iter fit;
  500. // Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between
  501. // all fields.
  502. size_t field_size = NATIVE_SLOT_MAX_SIZE;
  503. // Align the offset.
  504. off = align_up_to(off, field_size);
  505. // Assign all fields in the oneof this same offset.
  506. for (upb_oneof_begin(&fit, oneof);
  507. !upb_oneof_done(&fit);
  508. upb_oneof_next(&fit)) {
  509. const upb_fielddef* field = upb_oneof_iter_field(&fit);
  510. layout->fields[upb_fielddef_index(field)].offset = off;
  511. }
  512. off += field_size;
  513. }
  514. // Now the case fields.
  515. for (upb_msg_oneof_begin(&oit, msgdef);
  516. !upb_msg_oneof_done(&oit);
  517. upb_msg_oneof_next(&oit)) {
  518. const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
  519. upb_oneof_iter fit;
  520. size_t field_size = sizeof(uint32_t);
  521. // Align the offset.
  522. off = (off + field_size - 1) & ~(field_size - 1);
  523. // Assign all fields in the oneof this same offset.
  524. for (upb_oneof_begin(&fit, oneof);
  525. !upb_oneof_done(&fit);
  526. upb_oneof_next(&fit)) {
  527. const upb_fielddef* field = upb_oneof_iter_field(&fit);
  528. layout->fields[upb_fielddef_index(field)].case_offset = off;
  529. }
  530. off += field_size;
  531. }
  532. layout->size = off;
  533. layout->msgdef = msgdef;
  534. return layout;
  535. }
  536. void free_layout(MessageLayout* layout) {
  537. xfree(layout->fields);
  538. xfree(layout);
  539. }
  540. VALUE field_type_class(const MessageLayout* layout, const upb_fielddef* field) {
  541. VALUE type_class = Qnil;
  542. if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
  543. VALUE submsgdesc = get_msgdef_obj(layout->desc->descriptor_pool,
  544. upb_fielddef_msgsubdef(field));
  545. type_class = Descriptor_msgclass(submsgdesc);
  546. } else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) {
  547. VALUE subenumdesc = get_enumdef_obj(layout->desc->descriptor_pool,
  548. upb_fielddef_enumsubdef(field));
  549. type_class = EnumDescriptor_enummodule(subenumdesc);
  550. }
  551. return type_class;
  552. }
  553. static void* slot_memory(MessageLayout* layout,
  554. const void* storage,
  555. const upb_fielddef* field) {
  556. return ((uint8_t *)storage) +
  557. layout->fields[upb_fielddef_index(field)].offset;
  558. }
  559. static uint32_t* slot_oneof_case(MessageLayout* layout,
  560. const void* storage,
  561. const upb_fielddef* field) {
  562. return (uint32_t *)(((uint8_t *)storage) +
  563. layout->fields[upb_fielddef_index(field)].case_offset);
  564. }
  565. static void slot_set_hasbit(MessageLayout* layout,
  566. const void* storage,
  567. const upb_fielddef* field) {
  568. size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
  569. assert(hasbit != MESSAGE_FIELD_NO_HASBIT);
  570. ((uint8_t*)storage)[hasbit / 8] |= 1 << (hasbit % 8);
  571. }
  572. static void slot_clear_hasbit(MessageLayout* layout,
  573. const void* storage,
  574. const upb_fielddef* field) {
  575. size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
  576. assert(hasbit != MESSAGE_FIELD_NO_HASBIT);
  577. ((uint8_t*)storage)[hasbit / 8] &= ~(1 << (hasbit % 8));
  578. }
  579. static bool slot_is_hasbit_set(MessageLayout* layout,
  580. const void* storage,
  581. const upb_fielddef* field) {
  582. size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
  583. if (hasbit == MESSAGE_FIELD_NO_HASBIT) {
  584. return false;
  585. }
  586. return DEREF_OFFSET(
  587. (uint8_t*)storage, hasbit / 8, char) & (1 << (hasbit % 8));
  588. }
  589. VALUE layout_has(MessageLayout* layout,
  590. const void* storage,
  591. const upb_fielddef* field) {
  592. assert(field_contains_hasbit(layout, field));
  593. return slot_is_hasbit_set(layout, storage, field) ? Qtrue : Qfalse;
  594. }
  595. void layout_clear(MessageLayout* layout,
  596. const void* storage,
  597. const upb_fielddef* field) {
  598. void* memory = slot_memory(layout, storage, field);
  599. uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
  600. if (field_contains_hasbit(layout, field)) {
  601. slot_clear_hasbit(layout, storage, field);
  602. }
  603. if (upb_fielddef_containingoneof(field)) {
  604. memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
  605. *oneof_case = ONEOF_CASE_NONE;
  606. } else if (is_map_field(field)) {
  607. VALUE map = Qnil;
  608. const upb_fielddef* key_field = map_field_key(field);
  609. const upb_fielddef* value_field = map_field_value(field);
  610. VALUE type_class = field_type_class(layout, value_field);
  611. if (type_class != Qnil) {
  612. VALUE args[3] = {
  613. fieldtype_to_ruby(upb_fielddef_type(key_field)),
  614. fieldtype_to_ruby(upb_fielddef_type(value_field)),
  615. type_class,
  616. };
  617. map = rb_class_new_instance(3, args, cMap);
  618. } else {
  619. VALUE args[2] = {
  620. fieldtype_to_ruby(upb_fielddef_type(key_field)),
  621. fieldtype_to_ruby(upb_fielddef_type(value_field)),
  622. };
  623. map = rb_class_new_instance(2, args, cMap);
  624. }
  625. DEREF(memory, VALUE) = map;
  626. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  627. VALUE ary = Qnil;
  628. VALUE type_class = field_type_class(layout, field);
  629. if (type_class != Qnil) {
  630. VALUE args[2] = {
  631. fieldtype_to_ruby(upb_fielddef_type(field)),
  632. type_class,
  633. };
  634. ary = rb_class_new_instance(2, args, cRepeatedField);
  635. } else {
  636. VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) };
  637. ary = rb_class_new_instance(1, args, cRepeatedField);
  638. }
  639. DEREF(memory, VALUE) = ary;
  640. } else {
  641. native_slot_set(upb_fielddef_name(field), upb_fielddef_type(field),
  642. field_type_class(layout, field), memory,
  643. layout_get_default(field));
  644. }
  645. }
  646. VALUE layout_get_default(const upb_fielddef *field) {
  647. switch (upb_fielddef_type(field)) {
  648. case UPB_TYPE_FLOAT: return DBL2NUM(upb_fielddef_defaultfloat(field));
  649. case UPB_TYPE_DOUBLE: return DBL2NUM(upb_fielddef_defaultdouble(field));
  650. case UPB_TYPE_BOOL:
  651. return upb_fielddef_defaultbool(field) ? Qtrue : Qfalse;
  652. case UPB_TYPE_MESSAGE: return Qnil;
  653. case UPB_TYPE_ENUM: {
  654. const upb_enumdef *enumdef = upb_fielddef_enumsubdef(field);
  655. int32_t num = upb_fielddef_defaultint32(field);
  656. const char *label = upb_enumdef_iton(enumdef, num);
  657. if (label) {
  658. return ID2SYM(rb_intern(label));
  659. } else {
  660. return INT2NUM(num);
  661. }
  662. }
  663. case UPB_TYPE_INT32: return INT2NUM(upb_fielddef_defaultint32(field));
  664. case UPB_TYPE_INT64: return LL2NUM(upb_fielddef_defaultint64(field));;
  665. case UPB_TYPE_UINT32: return UINT2NUM(upb_fielddef_defaultuint32(field));
  666. case UPB_TYPE_UINT64: return ULL2NUM(upb_fielddef_defaultuint64(field));
  667. case UPB_TYPE_STRING:
  668. case UPB_TYPE_BYTES: {
  669. size_t size;
  670. const char *str = upb_fielddef_defaultstr(field, &size);
  671. return get_frozen_string(str, size,
  672. upb_fielddef_type(field) == UPB_TYPE_BYTES);
  673. }
  674. default: return Qnil;
  675. }
  676. }
  677. VALUE layout_get(MessageLayout* layout,
  678. const void* storage,
  679. const upb_fielddef* field) {
  680. void* memory = slot_memory(layout, storage, field);
  681. uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
  682. bool field_set;
  683. if (field_contains_hasbit(layout, field)) {
  684. field_set = slot_is_hasbit_set(layout, storage, field);
  685. } else {
  686. field_set = true;
  687. }
  688. if (upb_fielddef_containingoneof(field)) {
  689. if (*oneof_case != upb_fielddef_number(field)) {
  690. return layout_get_default(field);
  691. }
  692. return native_slot_get(upb_fielddef_type(field),
  693. field_type_class(layout, field), memory);
  694. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  695. return *((VALUE *)memory);
  696. } else if (!field_set) {
  697. return layout_get_default(field);
  698. } else {
  699. return native_slot_get(upb_fielddef_type(field),
  700. field_type_class(layout, field), memory);
  701. }
  702. }
  703. static void check_repeated_field_type(const MessageLayout* layout, VALUE val,
  704. const upb_fielddef* field) {
  705. RepeatedField* self;
  706. assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED);
  707. if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
  708. RTYPEDDATA_TYPE(val) != &RepeatedField_type) {
  709. rb_raise(cTypeError, "Expected repeated field array");
  710. }
  711. self = ruby_to_RepeatedField(val);
  712. if (self->field_type != upb_fielddef_type(field)) {
  713. rb_raise(cTypeError, "Repeated field array has wrong element type");
  714. }
  715. if (self->field_type_class != field_type_class(layout, field)) {
  716. rb_raise(cTypeError, "Repeated field array has wrong message/enum class");
  717. }
  718. }
  719. static void check_map_field_type(const MessageLayout* layout, VALUE val,
  720. const upb_fielddef* field) {
  721. const upb_fielddef* key_field = map_field_key(field);
  722. const upb_fielddef* value_field = map_field_value(field);
  723. Map* self;
  724. if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
  725. RTYPEDDATA_TYPE(val) != &Map_type) {
  726. rb_raise(cTypeError, "Expected Map instance");
  727. }
  728. self = ruby_to_Map(val);
  729. if (self->key_type != upb_fielddef_type(key_field)) {
  730. rb_raise(cTypeError, "Map key type does not match field's key type");
  731. }
  732. if (self->value_type != upb_fielddef_type(value_field)) {
  733. rb_raise(cTypeError, "Map value type does not match field's value type");
  734. }
  735. if (self->value_type_class != field_type_class(layout, value_field)) {
  736. rb_raise(cTypeError, "Map value type has wrong message/enum class");
  737. }
  738. }
  739. void layout_set(MessageLayout* layout,
  740. void* storage,
  741. const upb_fielddef* field,
  742. VALUE val) {
  743. void* memory = slot_memory(layout, storage, field);
  744. uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
  745. if (upb_fielddef_containingoneof(field)) {
  746. if (val == Qnil) {
  747. // Assigning nil to a oneof field clears the oneof completely.
  748. *oneof_case = ONEOF_CASE_NONE;
  749. memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
  750. } else {
  751. // The transition between field types for a single oneof (union) slot is
  752. // somewhat complex because we need to ensure that a GC triggered at any
  753. // point by a call into the Ruby VM sees a valid state for this field and
  754. // does not either go off into the weeds (following what it thinks is a
  755. // VALUE but is actually a different field type) or miss an object (seeing
  756. // what it thinks is a primitive field but is actually a VALUE for the new
  757. // field type).
  758. //
  759. // In order for the transition to be safe, the oneof case slot must be in
  760. // sync with the value slot whenever the Ruby VM has been called. Thus, we
  761. // use native_slot_set_value_and_case(), which ensures that both the value
  762. // and case number are altered atomically (w.r.t. the Ruby VM).
  763. native_slot_set_value_and_case(
  764. upb_fielddef_name(field),
  765. upb_fielddef_type(field), field_type_class(layout, field),
  766. memory, val,
  767. oneof_case, upb_fielddef_number(field));
  768. }
  769. } else if (is_map_field(field)) {
  770. check_map_field_type(layout, val, field);
  771. DEREF(memory, VALUE) = val;
  772. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  773. check_repeated_field_type(layout, val, field);
  774. DEREF(memory, VALUE) = val;
  775. } else {
  776. native_slot_set(upb_fielddef_name(field), upb_fielddef_type(field),
  777. field_type_class(layout, field), memory, val);
  778. }
  779. if (layout->fields[upb_fielddef_index(field)].hasbit !=
  780. MESSAGE_FIELD_NO_HASBIT) {
  781. slot_set_hasbit(layout, storage, field);
  782. }
  783. }
  784. void layout_init(MessageLayout* layout,
  785. void* storage) {
  786. upb_msg_field_iter it;
  787. for (upb_msg_field_begin(&it, layout->msgdef);
  788. !upb_msg_field_done(&it);
  789. upb_msg_field_next(&it)) {
  790. layout_clear(layout, storage, upb_msg_iter_field(&it));
  791. }
  792. }
  793. void layout_mark(MessageLayout* layout, void* storage) {
  794. upb_msg_field_iter it;
  795. for (upb_msg_field_begin(&it, layout->msgdef);
  796. !upb_msg_field_done(&it);
  797. upb_msg_field_next(&it)) {
  798. const upb_fielddef* field = upb_msg_iter_field(&it);
  799. void* memory = slot_memory(layout, storage, field);
  800. uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
  801. if (upb_fielddef_containingoneof(field)) {
  802. if (*oneof_case == upb_fielddef_number(field)) {
  803. native_slot_mark(upb_fielddef_type(field), memory);
  804. }
  805. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  806. rb_gc_mark(DEREF(memory, VALUE));
  807. } else {
  808. native_slot_mark(upb_fielddef_type(field), memory);
  809. }
  810. }
  811. }
  812. void layout_dup(MessageLayout* layout, void* to, void* from) {
  813. upb_msg_field_iter it;
  814. for (upb_msg_field_begin(&it, layout->msgdef);
  815. !upb_msg_field_done(&it);
  816. upb_msg_field_next(&it)) {
  817. const upb_fielddef* field = upb_msg_iter_field(&it);
  818. void* to_memory = slot_memory(layout, to, field);
  819. uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
  820. void* from_memory = slot_memory(layout, from, field);
  821. uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);
  822. if (upb_fielddef_containingoneof(field)) {
  823. if (*from_oneof_case == upb_fielddef_number(field)) {
  824. *to_oneof_case = *from_oneof_case;
  825. native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
  826. }
  827. } else if (is_map_field(field)) {
  828. DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE));
  829. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  830. DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE));
  831. } else {
  832. if (field_contains_hasbit(layout, field)) {
  833. if (!slot_is_hasbit_set(layout, from, field)) continue;
  834. slot_set_hasbit(layout, to, field);
  835. }
  836. native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
  837. }
  838. }
  839. }
  840. void layout_deep_copy(MessageLayout* layout, void* to, void* from) {
  841. upb_msg_field_iter it;
  842. for (upb_msg_field_begin(&it, layout->msgdef);
  843. !upb_msg_field_done(&it);
  844. upb_msg_field_next(&it)) {
  845. const upb_fielddef* field = upb_msg_iter_field(&it);
  846. void* to_memory = slot_memory(layout, to, field);
  847. uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
  848. void* from_memory = slot_memory(layout, from, field);
  849. uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);
  850. if (upb_fielddef_containingoneof(field)) {
  851. if (*from_oneof_case == upb_fielddef_number(field)) {
  852. *to_oneof_case = *from_oneof_case;
  853. native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
  854. }
  855. } else if (is_map_field(field)) {
  856. DEREF(to_memory, VALUE) =
  857. Map_deep_copy(DEREF(from_memory, VALUE));
  858. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  859. DEREF(to_memory, VALUE) =
  860. RepeatedField_deep_copy(DEREF(from_memory, VALUE));
  861. } else {
  862. if (field_contains_hasbit(layout, field)) {
  863. if (!slot_is_hasbit_set(layout, from, field)) continue;
  864. slot_set_hasbit(layout, to, field);
  865. }
  866. native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
  867. }
  868. }
  869. }
  870. VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) {
  871. upb_msg_field_iter it;
  872. for (upb_msg_field_begin(&it, layout->msgdef);
  873. !upb_msg_field_done(&it);
  874. upb_msg_field_next(&it)) {
  875. const upb_fielddef* field = upb_msg_iter_field(&it);
  876. void* msg1_memory = slot_memory(layout, msg1, field);
  877. uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, field);
  878. void* msg2_memory = slot_memory(layout, msg2, field);
  879. uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, field);
  880. if (upb_fielddef_containingoneof(field)) {
  881. if (*msg1_oneof_case != *msg2_oneof_case ||
  882. (*msg1_oneof_case == upb_fielddef_number(field) &&
  883. !native_slot_eq(upb_fielddef_type(field),
  884. msg1_memory,
  885. msg2_memory))) {
  886. return Qfalse;
  887. }
  888. } else if (is_map_field(field)) {
  889. if (!Map_eq(DEREF(msg1_memory, VALUE),
  890. DEREF(msg2_memory, VALUE))) {
  891. return Qfalse;
  892. }
  893. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  894. if (!RepeatedField_eq(DEREF(msg1_memory, VALUE),
  895. DEREF(msg2_memory, VALUE))) {
  896. return Qfalse;
  897. }
  898. } else {
  899. if (slot_is_hasbit_set(layout, msg1, field) !=
  900. slot_is_hasbit_set(layout, msg2, field) ||
  901. !native_slot_eq(upb_fielddef_type(field),
  902. msg1_memory, msg2_memory)) {
  903. return Qfalse;
  904. }
  905. }
  906. }
  907. return Qtrue;
  908. }
  909. VALUE layout_hash(MessageLayout* layout, void* storage) {
  910. upb_msg_field_iter it;
  911. st_index_t h = rb_hash_start(0);
  912. VALUE hash_sym = rb_intern("hash");
  913. for (upb_msg_field_begin(&it, layout->msgdef);
  914. !upb_msg_field_done(&it);
  915. upb_msg_field_next(&it)) {
  916. const upb_fielddef* field = upb_msg_iter_field(&it);
  917. VALUE field_val = layout_get(layout, storage, field);
  918. h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0)));
  919. }
  920. h = rb_hash_end(h);
  921. return INT2FIX(h);
  922. }
  923. VALUE layout_inspect(MessageLayout* layout, void* storage) {
  924. VALUE str = rb_str_new2("");
  925. upb_msg_field_iter it;
  926. bool first = true;
  927. for (upb_msg_field_begin(&it, layout->msgdef);
  928. !upb_msg_field_done(&it);
  929. upb_msg_field_next(&it)) {
  930. const upb_fielddef* field = upb_msg_iter_field(&it);
  931. VALUE field_val = layout_get(layout, storage, field);
  932. if (!first) {
  933. str = rb_str_cat2(str, ", ");
  934. } else {
  935. first = false;
  936. }
  937. str = rb_str_cat2(str, upb_fielddef_name(field));
  938. str = rb_str_cat2(str, ": ");
  939. str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0));
  940. }
  941. return str;
  942. }