storage.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060
  1. // Protocol Buffers - Google's data interchange format
  2. // Copyright 2014 Google Inc. All rights reserved.
  3. // https://developers.google.com/protocol-buffers/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are
  7. // met:
  8. //
  9. // * Redistributions of source code must retain the above copyright
  10. // notice, this list of conditions and the following disclaimer.
  11. // * Redistributions in binary form must reproduce the above
  12. // copyright notice, this list of conditions and the following disclaimer
  13. // in the documentation and/or other materials provided with the
  14. // distribution.
  15. // * Neither the name of Google Inc. nor the names of its
  16. // contributors may be used to endorse or promote products derived from
  17. // this software without specific prior written permission.
  18. //
  19. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  20. // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  21. // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  22. // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  23. // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  24. // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  25. // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  26. // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  27. // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  28. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  29. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30. #include "protobuf.h"
  31. #include <math.h>
  32. #include <ruby/encoding.h>
  33. // -----------------------------------------------------------------------------
  34. // Ruby <-> native slot management.
  35. // -----------------------------------------------------------------------------
  36. #define CHARPTR_AT(msg, ofs) ((char*)msg + ofs)
  37. #define DEREF_OFFSET(msg, ofs, type) *(type*)CHARPTR_AT(msg, ofs)
  38. #define DEREF(memory, type) *(type*)(memory)
  39. size_t native_slot_size(upb_fieldtype_t type) {
  40. switch (type) {
  41. case UPB_TYPE_FLOAT: return 4;
  42. case UPB_TYPE_DOUBLE: return 8;
  43. case UPB_TYPE_BOOL: return 1;
  44. case UPB_TYPE_STRING: return sizeof(VALUE);
  45. case UPB_TYPE_BYTES: return sizeof(VALUE);
  46. case UPB_TYPE_MESSAGE: return sizeof(VALUE);
  47. case UPB_TYPE_ENUM: return 4;
  48. case UPB_TYPE_INT32: return 4;
  49. case UPB_TYPE_INT64: return 8;
  50. case UPB_TYPE_UINT32: return 4;
  51. case UPB_TYPE_UINT64: return 8;
  52. default: return 0;
  53. }
  54. }
  55. static bool is_ruby_num(VALUE value) {
  56. return (TYPE(value) == T_FLOAT ||
  57. TYPE(value) == T_FIXNUM ||
  58. TYPE(value) == T_BIGNUM);
  59. }
  60. void native_slot_check_int_range_precision(const char* name, upb_fieldtype_t type, VALUE val) {
  61. if (!is_ruby_num(val)) {
  62. rb_raise(cTypeError, "Expected number type for integral field '%s' (given %s).",
  63. name, rb_class2name(CLASS_OF(val)));
  64. }
  65. // NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper
  66. // bound; we just need to do precision checks (i.e., disallow rounding) and
  67. // check for < 0 on unsigned types.
  68. if (TYPE(val) == T_FLOAT) {
  69. double dbl_val = NUM2DBL(val);
  70. if (floor(dbl_val) != dbl_val) {
  71. rb_raise(rb_eRangeError,
  72. "Non-integral floating point value assigned to integer field '%s' (given %s).",
  73. name, rb_class2name(CLASS_OF(val)));
  74. }
  75. }
  76. if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) {
  77. if (NUM2DBL(val) < 0) {
  78. rb_raise(rb_eRangeError,
  79. "Assigning negative value to unsigned integer field '%s' (given %s).",
  80. name, rb_class2name(CLASS_OF(val)));
  81. }
  82. }
  83. }
  84. VALUE native_slot_encode_and_freeze_string(upb_fieldtype_t type, VALUE value) {
  85. rb_encoding* desired_encoding = (type == UPB_TYPE_STRING) ?
  86. kRubyStringUtf8Encoding : kRubyString8bitEncoding;
  87. VALUE desired_encoding_value = rb_enc_from_encoding(desired_encoding);
  88. if (rb_obj_encoding(value) != desired_encoding_value || !OBJ_FROZEN(value)) {
  89. // Note: this will not duplicate underlying string data unless necessary.
  90. value = rb_str_encode(value, desired_encoding_value, 0, Qnil);
  91. if (type == UPB_TYPE_STRING &&
  92. rb_enc_str_coderange(value) == ENC_CODERANGE_BROKEN) {
  93. rb_raise(rb_eEncodingError, "String is invalid UTF-8");
  94. }
  95. // Ensure the data remains valid. Since we called #encode a moment ago,
  96. // this does not freeze the string the user assigned.
  97. rb_obj_freeze(value);
  98. }
  99. return value;
  100. }
  101. void native_slot_set(const char* name,
  102. upb_fieldtype_t type, VALUE type_class,
  103. void* memory, VALUE value) {
  104. native_slot_set_value_and_case(name, type, type_class, memory, value, NULL, 0);
  105. }
  106. void native_slot_set_value_and_case(const char* name,
  107. upb_fieldtype_t type, VALUE type_class,
  108. void* memory, VALUE value,
  109. uint32_t* case_memory,
  110. uint32_t case_number) {
  111. // Note that in order to atomically change the value in memory and the case
  112. // value (w.r.t. Ruby VM calls), we must set the value at |memory| only after
  113. // all Ruby VM calls are complete. The case is then set at the bottom of this
  114. // function.
  115. switch (type) {
  116. case UPB_TYPE_FLOAT:
  117. if (!is_ruby_num(value)) {
  118. rb_raise(cTypeError, "Expected number type for float field '%s' (given %s).",
  119. name, rb_class2name(CLASS_OF(value)));
  120. }
  121. DEREF(memory, float) = NUM2DBL(value);
  122. break;
  123. case UPB_TYPE_DOUBLE:
  124. if (!is_ruby_num(value)) {
  125. rb_raise(cTypeError, "Expected number type for double field '%s' (given %s).",
  126. name, rb_class2name(CLASS_OF(value)));
  127. }
  128. DEREF(memory, double) = NUM2DBL(value);
  129. break;
  130. case UPB_TYPE_BOOL: {
  131. int8_t val = -1;
  132. if (value == Qtrue) {
  133. val = 1;
  134. } else if (value == Qfalse) {
  135. val = 0;
  136. } else {
  137. rb_raise(cTypeError, "Invalid argument for boolean field '%s' (given %s).",
  138. name, rb_class2name(CLASS_OF(value)));
  139. }
  140. DEREF(memory, int8_t) = val;
  141. break;
  142. }
  143. case UPB_TYPE_STRING:
  144. if (CLASS_OF(value) == rb_cSymbol) {
  145. value = rb_funcall(value, rb_intern("to_s"), 0);
  146. } else if (CLASS_OF(value) != rb_cString) {
  147. rb_raise(cTypeError, "Invalid argument for string field '%s' (given %s).",
  148. name, rb_class2name(CLASS_OF(value)));
  149. }
  150. DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
  151. break;
  152. case UPB_TYPE_BYTES: {
  153. if (CLASS_OF(value) != rb_cString) {
  154. rb_raise(cTypeError, "Invalid argument for bytes field '%s' (given %s).",
  155. name, rb_class2name(CLASS_OF(value)));
  156. }
  157. DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
  158. break;
  159. }
  160. case UPB_TYPE_MESSAGE: {
  161. if (CLASS_OF(value) == CLASS_OF(Qnil)) {
  162. value = Qnil;
  163. } else if (CLASS_OF(value) != type_class) {
  164. // check for possible implicit conversions
  165. VALUE converted_value = NULL;
  166. char* field_type_name = rb_class2name(type_class);
  167. if (strcmp(field_type_name, "Google::Protobuf::Timestamp") == 0 &&
  168. rb_obj_is_kind_of(value, rb_cTime)) {
  169. // Time -> Google::Protobuf::Timestamp
  170. VALUE hash = rb_hash_new();
  171. rb_hash_aset(hash, rb_str_new2("seconds"), rb_funcall(value, rb_intern("to_i"), 0));
  172. rb_hash_aset(hash, rb_str_new2("nanos"), rb_funcall(value, rb_intern("nsec"), 0));
  173. VALUE args[1] = { hash };
  174. converted_value = rb_class_new_instance(1, args, type_class);
  175. } else if (strcmp(field_type_name, "Google::Protobuf::Duration") == 0 &&
  176. rb_obj_is_kind_of(value, rb_cNumeric)) {
  177. // Numeric -> Google::Protobuf::Duration
  178. VALUE hash = rb_hash_new();
  179. rb_hash_aset(hash, rb_str_new2("seconds"), rb_funcall(value, rb_intern("to_i"), 0));
  180. VALUE n_value = rb_funcall(value, rb_intern("remainder"), 1, INT2NUM(1));
  181. n_value = rb_funcall(n_value, rb_intern("*"), 1, INT2NUM(1000000000));
  182. n_value = rb_funcall(n_value, rb_intern("round"), 0);
  183. rb_hash_aset(hash, rb_str_new2("nanos"), n_value);
  184. VALUE args[1] = { hash };
  185. converted_value = rb_class_new_instance(1, args, type_class);
  186. }
  187. // raise if no suitable conversaion could be found
  188. if (converted_value == NULL) {
  189. rb_raise(cTypeError,
  190. "Invalid type %s to assign to submessage field '%s'.",
  191. rb_class2name(CLASS_OF(value)), name);
  192. } else {
  193. value = converted_value;
  194. }
  195. }
  196. DEREF(memory, VALUE) = value;
  197. break;
  198. }
  199. case UPB_TYPE_ENUM: {
  200. int32_t int_val = 0;
  201. if (TYPE(value) == T_STRING) {
  202. value = rb_funcall(value, rb_intern("to_sym"), 0);
  203. } else if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) {
  204. rb_raise(cTypeError,
  205. "Expected number or symbol type for enum field '%s'.", name);
  206. }
  207. if (TYPE(value) == T_SYMBOL) {
  208. // Ensure that the given symbol exists in the enum module.
  209. VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value);
  210. if (lookup == Qnil) {
  211. rb_raise(rb_eRangeError, "Unknown symbol value for enum field '%s'.", name);
  212. } else {
  213. int_val = NUM2INT(lookup);
  214. }
  215. } else {
  216. native_slot_check_int_range_precision(name, UPB_TYPE_INT32, value);
  217. int_val = NUM2INT(value);
  218. }
  219. DEREF(memory, int32_t) = int_val;
  220. break;
  221. }
  222. case UPB_TYPE_INT32:
  223. case UPB_TYPE_INT64:
  224. case UPB_TYPE_UINT32:
  225. case UPB_TYPE_UINT64:
  226. native_slot_check_int_range_precision(name, type, value);
  227. switch (type) {
  228. case UPB_TYPE_INT32:
  229. DEREF(memory, int32_t) = NUM2INT(value);
  230. break;
  231. case UPB_TYPE_INT64:
  232. DEREF(memory, int64_t) = NUM2LL(value);
  233. break;
  234. case UPB_TYPE_UINT32:
  235. DEREF(memory, uint32_t) = NUM2UINT(value);
  236. break;
  237. case UPB_TYPE_UINT64:
  238. DEREF(memory, uint64_t) = NUM2ULL(value);
  239. break;
  240. default:
  241. break;
  242. }
  243. break;
  244. default:
  245. break;
  246. }
  247. if (case_memory != NULL) {
  248. *case_memory = case_number;
  249. }
  250. }
  251. VALUE native_slot_get(upb_fieldtype_t type,
  252. VALUE type_class,
  253. const void* memory) {
  254. switch (type) {
  255. case UPB_TYPE_FLOAT:
  256. return DBL2NUM(DEREF(memory, float));
  257. case UPB_TYPE_DOUBLE:
  258. return DBL2NUM(DEREF(memory, double));
  259. case UPB_TYPE_BOOL:
  260. return DEREF(memory, int8_t) ? Qtrue : Qfalse;
  261. case UPB_TYPE_STRING:
  262. case UPB_TYPE_BYTES:
  263. case UPB_TYPE_MESSAGE:
  264. return DEREF(memory, VALUE);
  265. case UPB_TYPE_ENUM: {
  266. int32_t val = DEREF(memory, int32_t);
  267. VALUE symbol = enum_lookup(type_class, INT2NUM(val));
  268. if (symbol == Qnil) {
  269. return INT2NUM(val);
  270. } else {
  271. return symbol;
  272. }
  273. }
  274. case UPB_TYPE_INT32:
  275. return INT2NUM(DEREF(memory, int32_t));
  276. case UPB_TYPE_INT64:
  277. return LL2NUM(DEREF(memory, int64_t));
  278. case UPB_TYPE_UINT32:
  279. return UINT2NUM(DEREF(memory, uint32_t));
  280. case UPB_TYPE_UINT64:
  281. return ULL2NUM(DEREF(memory, uint64_t));
  282. default:
  283. return Qnil;
  284. }
  285. }
  286. void native_slot_init(upb_fieldtype_t type, void* memory) {
  287. switch (type) {
  288. case UPB_TYPE_FLOAT:
  289. DEREF(memory, float) = 0.0;
  290. break;
  291. case UPB_TYPE_DOUBLE:
  292. DEREF(memory, double) = 0.0;
  293. break;
  294. case UPB_TYPE_BOOL:
  295. DEREF(memory, int8_t) = 0;
  296. break;
  297. case UPB_TYPE_STRING:
  298. case UPB_TYPE_BYTES:
  299. DEREF(memory, VALUE) = rb_str_new2("");
  300. rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ?
  301. kRubyString8bitEncoding : kRubyStringUtf8Encoding);
  302. break;
  303. case UPB_TYPE_MESSAGE:
  304. DEREF(memory, VALUE) = Qnil;
  305. break;
  306. case UPB_TYPE_ENUM:
  307. case UPB_TYPE_INT32:
  308. DEREF(memory, int32_t) = 0;
  309. break;
  310. case UPB_TYPE_INT64:
  311. DEREF(memory, int64_t) = 0;
  312. break;
  313. case UPB_TYPE_UINT32:
  314. DEREF(memory, uint32_t) = 0;
  315. break;
  316. case UPB_TYPE_UINT64:
  317. DEREF(memory, uint64_t) = 0;
  318. break;
  319. default:
  320. break;
  321. }
  322. }
  323. void native_slot_mark(upb_fieldtype_t type, void* memory) {
  324. switch (type) {
  325. case UPB_TYPE_STRING:
  326. case UPB_TYPE_BYTES:
  327. case UPB_TYPE_MESSAGE:
  328. rb_gc_mark(DEREF(memory, VALUE));
  329. break;
  330. default:
  331. break;
  332. }
  333. }
  334. void native_slot_dup(upb_fieldtype_t type, void* to, void* from) {
  335. memcpy(to, from, native_slot_size(type));
  336. }
  337. void native_slot_deep_copy(upb_fieldtype_t type, void* to, void* from) {
  338. switch (type) {
  339. case UPB_TYPE_STRING:
  340. case UPB_TYPE_BYTES: {
  341. VALUE from_val = DEREF(from, VALUE);
  342. DEREF(to, VALUE) = (from_val != Qnil) ?
  343. rb_funcall(from_val, rb_intern("dup"), 0) : Qnil;
  344. break;
  345. }
  346. case UPB_TYPE_MESSAGE: {
  347. VALUE from_val = DEREF(from, VALUE);
  348. DEREF(to, VALUE) = (from_val != Qnil) ?
  349. Message_deep_copy(from_val) : Qnil;
  350. break;
  351. }
  352. default:
  353. memcpy(to, from, native_slot_size(type));
  354. }
  355. }
  356. bool native_slot_eq(upb_fieldtype_t type, void* mem1, void* mem2) {
  357. switch (type) {
  358. case UPB_TYPE_STRING:
  359. case UPB_TYPE_BYTES:
  360. case UPB_TYPE_MESSAGE: {
  361. VALUE val1 = DEREF(mem1, VALUE);
  362. VALUE val2 = DEREF(mem2, VALUE);
  363. VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2);
  364. return ret == Qtrue;
  365. }
  366. default:
  367. return !memcmp(mem1, mem2, native_slot_size(type));
  368. }
  369. }
  370. // -----------------------------------------------------------------------------
  371. // Map field utilities.
  372. // -----------------------------------------------------------------------------
  373. const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) {
  374. const upb_msgdef* subdef;
  375. if (upb_fielddef_label(field) != UPB_LABEL_REPEATED ||
  376. upb_fielddef_type(field) != UPB_TYPE_MESSAGE) {
  377. return NULL;
  378. }
  379. subdef = upb_fielddef_msgsubdef(field);
  380. return upb_msgdef_mapentry(subdef) ? subdef : NULL;
  381. }
  382. const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) {
  383. const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
  384. assert(subdef);
  385. return subdef;
  386. }
  387. bool is_map_field(const upb_fielddef *field) {
  388. const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
  389. if (subdef == NULL) return false;
  390. // Map fields are a proto3 feature.
  391. // If we're using proto2 syntax we need to fallback to the repeated field.
  392. return upb_msgdef_syntax(subdef) == UPB_SYNTAX_PROTO3;
  393. }
  394. const upb_fielddef* map_field_key(const upb_fielddef* field) {
  395. const upb_msgdef* subdef = map_entry_msgdef(field);
  396. return map_entry_key(subdef);
  397. }
  398. const upb_fielddef* map_field_value(const upb_fielddef* field) {
  399. const upb_msgdef* subdef = map_entry_msgdef(field);
  400. return map_entry_value(subdef);
  401. }
  402. const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) {
  403. const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD);
  404. assert(key_field != NULL);
  405. return key_field;
  406. }
  407. const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) {
  408. const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD);
  409. assert(value_field != NULL);
  410. return value_field;
  411. }
  412. // -----------------------------------------------------------------------------
  413. // Memory layout management.
  414. // -----------------------------------------------------------------------------
  415. bool field_contains_hasbit(MessageLayout* layout,
  416. const upb_fielddef* field) {
  417. return layout->fields[upb_fielddef_index(field)].hasbit !=
  418. MESSAGE_FIELD_NO_HASBIT;
  419. }
  420. static size_t align_up_to(size_t offset, size_t granularity) {
  421. // Granularity must be a power of two.
  422. return (offset + granularity - 1) & ~(granularity - 1);
  423. }
  424. MessageLayout* create_layout(const upb_msgdef* msgdef) {
  425. MessageLayout* layout = ALLOC(MessageLayout);
  426. int nfields = upb_msgdef_numfields(msgdef);
  427. upb_msg_field_iter it;
  428. upb_msg_oneof_iter oit;
  429. size_t off = 0;
  430. layout->fields = ALLOC_N(MessageField, nfields);
  431. size_t hasbit = 0;
  432. for (upb_msg_field_begin(&it, msgdef);
  433. !upb_msg_field_done(&it);
  434. upb_msg_field_next(&it)) {
  435. const upb_fielddef* field = upb_msg_iter_field(&it);
  436. if (upb_fielddef_haspresence(field)) {
  437. layout->fields[upb_fielddef_index(field)].hasbit = hasbit++;
  438. } else {
  439. layout->fields[upb_fielddef_index(field)].hasbit =
  440. MESSAGE_FIELD_NO_HASBIT;
  441. }
  442. }
  443. if (hasbit != 0) {
  444. off += (hasbit + 8 - 1) / 8;
  445. }
  446. for (upb_msg_field_begin(&it, msgdef);
  447. !upb_msg_field_done(&it);
  448. upb_msg_field_next(&it)) {
  449. const upb_fielddef* field = upb_msg_iter_field(&it);
  450. size_t field_size;
  451. if (upb_fielddef_containingoneof(field)) {
  452. // Oneofs are handled separately below.
  453. continue;
  454. }
  455. // Allocate |field_size| bytes for this field in the layout.
  456. field_size = 0;
  457. if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  458. field_size = sizeof(VALUE);
  459. } else {
  460. field_size = native_slot_size(upb_fielddef_type(field));
  461. }
  462. // Align current offset up to |size| granularity.
  463. off = align_up_to(off, field_size);
  464. layout->fields[upb_fielddef_index(field)].offset = off;
  465. layout->fields[upb_fielddef_index(field)].case_offset =
  466. MESSAGE_FIELD_NO_CASE;
  467. off += field_size;
  468. }
  469. // Handle oneofs now -- we iterate over oneofs specifically and allocate only
  470. // one slot per oneof.
  471. //
  472. // We assign all value slots first, then pack the 'case' fields at the end,
  473. // since in the common case (modern 64-bit platform) these are 8 bytes and 4
  474. // bytes respectively and we want to avoid alignment overhead.
  475. //
  476. // Note that we reserve 4 bytes (a uint32) per 'case' slot because the value
  477. // space for oneof cases is conceptually as wide as field tag numbers. In
  478. // practice, it's unlikely that a oneof would have more than e.g. 256 or 64K
  479. // members (8 or 16 bits respectively), so conceivably we could assign
  480. // consecutive case numbers and then pick a smaller oneof case slot size, but
  481. // the complexity to implement this indirection is probably not worthwhile.
  482. for (upb_msg_oneof_begin(&oit, msgdef);
  483. !upb_msg_oneof_done(&oit);
  484. upb_msg_oneof_next(&oit)) {
  485. const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
  486. upb_oneof_iter fit;
  487. // Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between
  488. // all fields.
  489. size_t field_size = NATIVE_SLOT_MAX_SIZE;
  490. // Align the offset.
  491. off = align_up_to(off, field_size);
  492. // Assign all fields in the oneof this same offset.
  493. for (upb_oneof_begin(&fit, oneof);
  494. !upb_oneof_done(&fit);
  495. upb_oneof_next(&fit)) {
  496. const upb_fielddef* field = upb_oneof_iter_field(&fit);
  497. layout->fields[upb_fielddef_index(field)].offset = off;
  498. }
  499. off += field_size;
  500. }
  501. // Now the case fields.
  502. for (upb_msg_oneof_begin(&oit, msgdef);
  503. !upb_msg_oneof_done(&oit);
  504. upb_msg_oneof_next(&oit)) {
  505. const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
  506. upb_oneof_iter fit;
  507. size_t field_size = sizeof(uint32_t);
  508. // Align the offset.
  509. off = (off + field_size - 1) & ~(field_size - 1);
  510. // Assign all fields in the oneof this same offset.
  511. for (upb_oneof_begin(&fit, oneof);
  512. !upb_oneof_done(&fit);
  513. upb_oneof_next(&fit)) {
  514. const upb_fielddef* field = upb_oneof_iter_field(&fit);
  515. layout->fields[upb_fielddef_index(field)].case_offset = off;
  516. }
  517. off += field_size;
  518. }
  519. layout->size = off;
  520. layout->msgdef = msgdef;
  521. upb_msgdef_ref(layout->msgdef, &layout->msgdef);
  522. return layout;
  523. }
  524. void free_layout(MessageLayout* layout) {
  525. xfree(layout->fields);
  526. upb_msgdef_unref(layout->msgdef, &layout->msgdef);
  527. xfree(layout);
  528. }
  529. VALUE field_type_class(const upb_fielddef* field) {
  530. VALUE type_class = Qnil;
  531. if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
  532. VALUE submsgdesc =
  533. get_def_obj(upb_fielddef_subdef(field));
  534. type_class = Descriptor_msgclass(submsgdesc);
  535. } else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) {
  536. VALUE subenumdesc =
  537. get_def_obj(upb_fielddef_subdef(field));
  538. type_class = EnumDescriptor_enummodule(subenumdesc);
  539. }
  540. return type_class;
  541. }
  542. static void* slot_memory(MessageLayout* layout,
  543. const void* storage,
  544. const upb_fielddef* field) {
  545. return ((uint8_t *)storage) +
  546. layout->fields[upb_fielddef_index(field)].offset;
  547. }
  548. static uint32_t* slot_oneof_case(MessageLayout* layout,
  549. const void* storage,
  550. const upb_fielddef* field) {
  551. return (uint32_t *)(((uint8_t *)storage) +
  552. layout->fields[upb_fielddef_index(field)].case_offset);
  553. }
  554. static void slot_set_hasbit(MessageLayout* layout,
  555. const void* storage,
  556. const upb_fielddef* field) {
  557. size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
  558. assert(hasbit != MESSAGE_FIELD_NO_HASBIT);
  559. ((uint8_t*)storage)[hasbit / 8] |= 1 << (hasbit % 8);
  560. }
  561. static void slot_clear_hasbit(MessageLayout* layout,
  562. const void* storage,
  563. const upb_fielddef* field) {
  564. size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
  565. assert(hasbit != MESSAGE_FIELD_NO_HASBIT);
  566. ((uint8_t*)storage)[hasbit / 8] &= ~(1 << (hasbit % 8));
  567. }
  568. static bool slot_is_hasbit_set(MessageLayout* layout,
  569. const void* storage,
  570. const upb_fielddef* field) {
  571. size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
  572. if (hasbit == MESSAGE_FIELD_NO_HASBIT) {
  573. return false;
  574. }
  575. return DEREF_OFFSET(
  576. (uint8_t*)storage, hasbit / 8, char) & (1 << (hasbit % 8));
  577. }
  578. VALUE layout_has(MessageLayout* layout,
  579. const void* storage,
  580. const upb_fielddef* field) {
  581. assert(field_contains_hasbit(layout, field));
  582. return slot_is_hasbit_set(layout, storage, field) ? Qtrue : Qfalse;
  583. }
  584. void layout_clear(MessageLayout* layout,
  585. const void* storage,
  586. const upb_fielddef* field) {
  587. void* memory = slot_memory(layout, storage, field);
  588. uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
  589. if (field_contains_hasbit(layout, field)) {
  590. slot_clear_hasbit(layout, storage, field);
  591. }
  592. if (upb_fielddef_containingoneof(field)) {
  593. memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
  594. *oneof_case = ONEOF_CASE_NONE;
  595. } else if (is_map_field(field)) {
  596. VALUE map = Qnil;
  597. const upb_fielddef* key_field = map_field_key(field);
  598. const upb_fielddef* value_field = map_field_value(field);
  599. VALUE type_class = field_type_class(value_field);
  600. if (type_class != Qnil) {
  601. VALUE args[3] = {
  602. fieldtype_to_ruby(upb_fielddef_type(key_field)),
  603. fieldtype_to_ruby(upb_fielddef_type(value_field)),
  604. type_class,
  605. };
  606. map = rb_class_new_instance(3, args, cMap);
  607. } else {
  608. VALUE args[2] = {
  609. fieldtype_to_ruby(upb_fielddef_type(key_field)),
  610. fieldtype_to_ruby(upb_fielddef_type(value_field)),
  611. };
  612. map = rb_class_new_instance(2, args, cMap);
  613. }
  614. DEREF(memory, VALUE) = map;
  615. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  616. VALUE ary = Qnil;
  617. VALUE type_class = field_type_class(field);
  618. if (type_class != Qnil) {
  619. VALUE args[2] = {
  620. fieldtype_to_ruby(upb_fielddef_type(field)),
  621. type_class,
  622. };
  623. ary = rb_class_new_instance(2, args, cRepeatedField);
  624. } else {
  625. VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) };
  626. ary = rb_class_new_instance(1, args, cRepeatedField);
  627. }
  628. DEREF(memory, VALUE) = ary;
  629. } else {
  630. native_slot_set(upb_fielddef_name(field),
  631. upb_fielddef_type(field), field_type_class(field),
  632. memory, layout_get_default(field));
  633. }
  634. }
  635. VALUE layout_get_default(const upb_fielddef *field) {
  636. switch (upb_fielddef_type(field)) {
  637. case UPB_TYPE_FLOAT: return DBL2NUM(upb_fielddef_defaultfloat(field));
  638. case UPB_TYPE_DOUBLE: return DBL2NUM(upb_fielddef_defaultdouble(field));
  639. case UPB_TYPE_BOOL:
  640. return upb_fielddef_defaultbool(field) ? Qtrue : Qfalse;
  641. case UPB_TYPE_MESSAGE: return Qnil;
  642. case UPB_TYPE_ENUM: {
  643. const upb_enumdef *enumdef = upb_fielddef_enumsubdef(field);
  644. int32_t num = upb_fielddef_defaultint32(field);
  645. const char *label = upb_enumdef_iton(enumdef, num);
  646. if (label) {
  647. return ID2SYM(rb_intern(label));
  648. } else {
  649. return INT2NUM(num);
  650. }
  651. }
  652. case UPB_TYPE_INT32: return INT2NUM(upb_fielddef_defaultint32(field));
  653. case UPB_TYPE_INT64: return LL2NUM(upb_fielddef_defaultint64(field));;
  654. case UPB_TYPE_UINT32: return UINT2NUM(upb_fielddef_defaultuint32(field));
  655. case UPB_TYPE_UINT64: return ULL2NUM(upb_fielddef_defaultuint64(field));
  656. case UPB_TYPE_STRING:
  657. case UPB_TYPE_BYTES: {
  658. size_t size;
  659. const char *str = upb_fielddef_defaultstr(field, &size);
  660. return get_frozen_string(str, size,
  661. upb_fielddef_type(field) == UPB_TYPE_BYTES);
  662. }
  663. default: return Qnil;
  664. }
  665. }
  666. VALUE layout_get(MessageLayout* layout,
  667. const void* storage,
  668. const upb_fielddef* field) {
  669. void* memory = slot_memory(layout, storage, field);
  670. uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
  671. bool field_set;
  672. if (field_contains_hasbit(layout, field)) {
  673. field_set = slot_is_hasbit_set(layout, storage, field);
  674. } else {
  675. field_set = true;
  676. }
  677. if (upb_fielddef_containingoneof(field)) {
  678. if (*oneof_case != upb_fielddef_number(field)) {
  679. return layout_get_default(field);
  680. }
  681. return native_slot_get(upb_fielddef_type(field),
  682. field_type_class(field),
  683. memory);
  684. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  685. return *((VALUE *)memory);
  686. } else if (!field_set) {
  687. return layout_get_default(field);
  688. } else {
  689. return native_slot_get(upb_fielddef_type(field),
  690. field_type_class(field),
  691. memory);
  692. }
  693. }
  694. static void check_repeated_field_type(VALUE val, const upb_fielddef* field) {
  695. RepeatedField* self;
  696. assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED);
  697. if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
  698. RTYPEDDATA_TYPE(val) != &RepeatedField_type) {
  699. rb_raise(cTypeError, "Expected repeated field array");
  700. }
  701. self = ruby_to_RepeatedField(val);
  702. if (self->field_type != upb_fielddef_type(field)) {
  703. rb_raise(cTypeError, "Repeated field array has wrong element type");
  704. }
  705. if (self->field_type == UPB_TYPE_MESSAGE) {
  706. if (self->field_type_class !=
  707. Descriptor_msgclass(get_def_obj(upb_fielddef_subdef(field)))) {
  708. rb_raise(cTypeError,
  709. "Repeated field array has wrong message class");
  710. }
  711. }
  712. if (self->field_type == UPB_TYPE_ENUM) {
  713. if (self->field_type_class !=
  714. EnumDescriptor_enummodule(get_def_obj(upb_fielddef_subdef(field)))) {
  715. rb_raise(cTypeError,
  716. "Repeated field array has wrong enum class");
  717. }
  718. }
  719. }
  720. static void check_map_field_type(VALUE val, const upb_fielddef* field) {
  721. const upb_fielddef* key_field = map_field_key(field);
  722. const upb_fielddef* value_field = map_field_value(field);
  723. Map* self;
  724. if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
  725. RTYPEDDATA_TYPE(val) != &Map_type) {
  726. rb_raise(cTypeError, "Expected Map instance");
  727. }
  728. self = ruby_to_Map(val);
  729. if (self->key_type != upb_fielddef_type(key_field)) {
  730. rb_raise(cTypeError, "Map key type does not match field's key type");
  731. }
  732. if (self->value_type != upb_fielddef_type(value_field)) {
  733. rb_raise(cTypeError, "Map value type does not match field's value type");
  734. }
  735. if (upb_fielddef_type(value_field) == UPB_TYPE_MESSAGE ||
  736. upb_fielddef_type(value_field) == UPB_TYPE_ENUM) {
  737. if (self->value_type_class !=
  738. get_def_obj(upb_fielddef_subdef(value_field))) {
  739. rb_raise(cTypeError,
  740. "Map value type has wrong message/enum class");
  741. }
  742. }
  743. }
  744. void layout_set(MessageLayout* layout,
  745. void* storage,
  746. const upb_fielddef* field,
  747. VALUE val) {
  748. void* memory = slot_memory(layout, storage, field);
  749. uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
  750. if (upb_fielddef_containingoneof(field)) {
  751. if (val == Qnil) {
  752. // Assigning nil to a oneof field clears the oneof completely.
  753. *oneof_case = ONEOF_CASE_NONE;
  754. memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
  755. } else {
  756. // The transition between field types for a single oneof (union) slot is
  757. // somewhat complex because we need to ensure that a GC triggered at any
  758. // point by a call into the Ruby VM sees a valid state for this field and
  759. // does not either go off into the weeds (following what it thinks is a
  760. // VALUE but is actually a different field type) or miss an object (seeing
  761. // what it thinks is a primitive field but is actually a VALUE for the new
  762. // field type).
  763. //
  764. // In order for the transition to be safe, the oneof case slot must be in
  765. // sync with the value slot whenever the Ruby VM has been called. Thus, we
  766. // use native_slot_set_value_and_case(), which ensures that both the value
  767. // and case number are altered atomically (w.r.t. the Ruby VM).
  768. native_slot_set_value_and_case(
  769. upb_fielddef_name(field),
  770. upb_fielddef_type(field), field_type_class(field),
  771. memory, val,
  772. oneof_case, upb_fielddef_number(field));
  773. }
  774. } else if (is_map_field(field)) {
  775. check_map_field_type(val, field);
  776. DEREF(memory, VALUE) = val;
  777. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  778. check_repeated_field_type(val, field);
  779. DEREF(memory, VALUE) = val;
  780. } else {
  781. native_slot_set(upb_fielddef_name(field),
  782. upb_fielddef_type(field), field_type_class(field),
  783. memory, val);
  784. }
  785. if (layout->fields[upb_fielddef_index(field)].hasbit !=
  786. MESSAGE_FIELD_NO_HASBIT) {
  787. slot_set_hasbit(layout, storage, field);
  788. }
  789. }
  790. void layout_init(MessageLayout* layout,
  791. void* storage) {
  792. upb_msg_field_iter it;
  793. for (upb_msg_field_begin(&it, layout->msgdef);
  794. !upb_msg_field_done(&it);
  795. upb_msg_field_next(&it)) {
  796. layout_clear(layout, storage, upb_msg_iter_field(&it));
  797. }
  798. }
  799. void layout_mark(MessageLayout* layout, void* storage) {
  800. upb_msg_field_iter it;
  801. for (upb_msg_field_begin(&it, layout->msgdef);
  802. !upb_msg_field_done(&it);
  803. upb_msg_field_next(&it)) {
  804. const upb_fielddef* field = upb_msg_iter_field(&it);
  805. void* memory = slot_memory(layout, storage, field);
  806. uint32_t* oneof_case = slot_oneof_case(layout, storage, field);
  807. if (upb_fielddef_containingoneof(field)) {
  808. if (*oneof_case == upb_fielddef_number(field)) {
  809. native_slot_mark(upb_fielddef_type(field), memory);
  810. }
  811. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  812. rb_gc_mark(DEREF(memory, VALUE));
  813. } else {
  814. native_slot_mark(upb_fielddef_type(field), memory);
  815. }
  816. }
  817. }
  818. void layout_dup(MessageLayout* layout, void* to, void* from) {
  819. upb_msg_field_iter it;
  820. for (upb_msg_field_begin(&it, layout->msgdef);
  821. !upb_msg_field_done(&it);
  822. upb_msg_field_next(&it)) {
  823. const upb_fielddef* field = upb_msg_iter_field(&it);
  824. void* to_memory = slot_memory(layout, to, field);
  825. uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
  826. void* from_memory = slot_memory(layout, from, field);
  827. uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);
  828. if (upb_fielddef_containingoneof(field)) {
  829. if (*from_oneof_case == upb_fielddef_number(field)) {
  830. *to_oneof_case = *from_oneof_case;
  831. native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
  832. }
  833. } else if (is_map_field(field)) {
  834. DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE));
  835. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  836. DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE));
  837. } else {
  838. if (field_contains_hasbit(layout, field)) {
  839. if (!slot_is_hasbit_set(layout, from, field)) continue;
  840. slot_set_hasbit(layout, to, field);
  841. }
  842. native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
  843. }
  844. }
  845. }
  846. void layout_deep_copy(MessageLayout* layout, void* to, void* from) {
  847. upb_msg_field_iter it;
  848. for (upb_msg_field_begin(&it, layout->msgdef);
  849. !upb_msg_field_done(&it);
  850. upb_msg_field_next(&it)) {
  851. const upb_fielddef* field = upb_msg_iter_field(&it);
  852. void* to_memory = slot_memory(layout, to, field);
  853. uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
  854. void* from_memory = slot_memory(layout, from, field);
  855. uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);
  856. if (upb_fielddef_containingoneof(field)) {
  857. if (*from_oneof_case == upb_fielddef_number(field)) {
  858. *to_oneof_case = *from_oneof_case;
  859. native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
  860. }
  861. } else if (is_map_field(field)) {
  862. DEREF(to_memory, VALUE) =
  863. Map_deep_copy(DEREF(from_memory, VALUE));
  864. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  865. DEREF(to_memory, VALUE) =
  866. RepeatedField_deep_copy(DEREF(from_memory, VALUE));
  867. } else {
  868. if (field_contains_hasbit(layout, field)) {
  869. if (!slot_is_hasbit_set(layout, from, field)) continue;
  870. slot_set_hasbit(layout, to, field);
  871. }
  872. native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
  873. }
  874. }
  875. }
  876. VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) {
  877. upb_msg_field_iter it;
  878. for (upb_msg_field_begin(&it, layout->msgdef);
  879. !upb_msg_field_done(&it);
  880. upb_msg_field_next(&it)) {
  881. const upb_fielddef* field = upb_msg_iter_field(&it);
  882. void* msg1_memory = slot_memory(layout, msg1, field);
  883. uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, field);
  884. void* msg2_memory = slot_memory(layout, msg2, field);
  885. uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, field);
  886. if (upb_fielddef_containingoneof(field)) {
  887. if (*msg1_oneof_case != *msg2_oneof_case ||
  888. (*msg1_oneof_case == upb_fielddef_number(field) &&
  889. !native_slot_eq(upb_fielddef_type(field),
  890. msg1_memory,
  891. msg2_memory))) {
  892. return Qfalse;
  893. }
  894. } else if (is_map_field(field)) {
  895. if (!Map_eq(DEREF(msg1_memory, VALUE),
  896. DEREF(msg2_memory, VALUE))) {
  897. return Qfalse;
  898. }
  899. } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
  900. if (!RepeatedField_eq(DEREF(msg1_memory, VALUE),
  901. DEREF(msg2_memory, VALUE))) {
  902. return Qfalse;
  903. }
  904. } else {
  905. if (slot_is_hasbit_set(layout, msg1, field) !=
  906. slot_is_hasbit_set(layout, msg2, field) ||
  907. !native_slot_eq(upb_fielddef_type(field),
  908. msg1_memory, msg2_memory)) {
  909. return Qfalse;
  910. }
  911. }
  912. }
  913. return Qtrue;
  914. }
  915. VALUE layout_hash(MessageLayout* layout, void* storage) {
  916. upb_msg_field_iter it;
  917. st_index_t h = rb_hash_start(0);
  918. VALUE hash_sym = rb_intern("hash");
  919. for (upb_msg_field_begin(&it, layout->msgdef);
  920. !upb_msg_field_done(&it);
  921. upb_msg_field_next(&it)) {
  922. const upb_fielddef* field = upb_msg_iter_field(&it);
  923. VALUE field_val = layout_get(layout, storage, field);
  924. h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0)));
  925. }
  926. h = rb_hash_end(h);
  927. return INT2FIX(h);
  928. }
  929. VALUE layout_inspect(MessageLayout* layout, void* storage) {
  930. VALUE str = rb_str_new2("");
  931. upb_msg_field_iter it;
  932. bool first = true;
  933. for (upb_msg_field_begin(&it, layout->msgdef);
  934. !upb_msg_field_done(&it);
  935. upb_msg_field_next(&it)) {
  936. const upb_fielddef* field = upb_msg_iter_field(&it);
  937. VALUE field_val = layout_get(layout, storage, field);
  938. if (!first) {
  939. str = rb_str_cat2(str, ", ");
  940. } else {
  941. first = false;
  942. }
  943. str = rb_str_cat2(str, upb_fielddef_name(field));
  944. str = rb_str_cat2(str, ": ");
  945. str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0));
  946. }
  947. return str;
  948. }