| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112 | // Protocol Buffers - Google's data interchange format// Copyright 2008 Google Inc.  All rights reserved.// http://github.com/jskeet/dotnet-protobufs/// Original C++/Java/Python code:// http://code.google.com/p/protobuf///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:////     * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//     * Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.//     * Neither the name of Google Inc. nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.using System;using System.IO;using System.Text;using Google.ProtocolBuffers.Descriptors;namespace Google.ProtocolBuffers {  /// <summary>  /// Encodes and writes protocol message fields.  /// </summary>  /// <remarks>  /// This class contains two kinds of methods:  methods that write specific  /// protocol message constructs and field types (e.g. WriteTag and  /// WriteInt32) and methods that write low-level values (e.g.  /// WriteRawVarint32 and WriteRawBytes).  If you are writing encoded protocol  /// messages, you should use the former methods, but if you are writing some  /// other format of your own design, use the latter. The names of the former  /// methods are taken from the protocol buffer type names, not .NET types.  /// (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)  /// </remarks>  public sealed class CodedOutputStream {    /// <summary>    /// The buffer size used by CreateInstance(Stream).    /// </summary>    public static readonly int DefaultBufferSize = 4096;    private readonly byte[] buffer;    private readonly int limit;    private int position;    private readonly Stream output;    #region Construction    private CodedOutputStream(byte[] buffer, int offset, int length) {      this.output = null;      this.buffer = buffer;      this.position = offset;      this.limit = offset + length;    }    private CodedOutputStream(Stream output, byte[] buffer) {      this.output = output;      this.buffer = buffer;      this.position = 0;      this.limit = buffer.Length;    }    /// <summary>    /// Creates a new CodedOutputStream which write to the given stream.    /// </summary>    public static CodedOutputStream CreateInstance(Stream output) {      return CreateInstance(output, DefaultBufferSize);    }    /// <summary>    /// Creates a new CodedOutputStream which write to the given stream and uses    /// the specified buffer size.    /// </summary>    public static CodedOutputStream CreateInstance(Stream output, int bufferSize) {      return new CodedOutputStream(output, new byte[bufferSize]);    }    /// <summary>    /// Creates a new CodedOutputStream that writes directly to the given    /// byte array. If more bytes are written than fit in the array,    /// OutOfSpaceException will be thrown.    /// </summary>    public static CodedOutputStream CreateInstance(byte[] flatArray) {      return CreateInstance(flatArray, 0, flatArray.Length);    }    /// <summary>    /// Creates a new CodedOutputStream that writes directly to the given    /// byte array slice. If more bytes are written than fit in the array,    /// OutOfSpaceException will be thrown.    /// </summary>    public static CodedOutputStream CreateInstance(byte[] flatArray, int offset, int length) {      return new CodedOutputStream(flatArray, offset, length);    }    #endregion    #region Writing of tags etc    /// <summary>    /// Writes a double field value, including tag, to the stream.    /// </summary>    public void WriteDouble(int fieldNumber, double value) {      // TODO(jonskeet): Test this on different endiannesses      WriteTag(fieldNumber, WireFormat.WireType.Fixed64);      WriteRawLittleEndian64((ulong)BitConverter.DoubleToInt64Bits(value));    }    /// <summary>    /// Writes a float field value, including tag, to the stream.    /// </summary>    public void WriteFloat(int fieldNumber, float value) {      WriteTag(fieldNumber, WireFormat.WireType.Fixed32);      // TODO(jonskeet): Test this on different endiannesses      byte[] rawBytes = BitConverter.GetBytes(value);      uint asInteger = BitConverter.ToUInt32(rawBytes, 0);      WriteRawLittleEndian32(asInteger);    }    /// <summary>    /// Writes a uint64 field value, including tag, to the stream.    /// </summary>    public void WriteUInt64(int fieldNumber, ulong value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      WriteRawVarint64(value);    }    /// <summary>    /// Writes an int64 field value, including tag, to the stream.    /// </summary>    public void WriteInt64(int fieldNumber, long value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      WriteRawVarint64((ulong)value);    }    /// <summary>    /// Writes an int32 field value, including tag, to the stream.    /// </summary>    public void WriteInt32(int fieldNumber, int value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      if (value >= 0) {        WriteRawVarint32((uint)value);      } else {        // Must sign-extend.        WriteRawVarint64((ulong)value);      }    }    /// <summary>    /// Writes a fixed64 field value, including tag, to the stream.    /// </summary>    public void WriteFixed64(int fieldNumber, ulong value) {      WriteTag(fieldNumber, WireFormat.WireType.Fixed64);      WriteRawLittleEndian64(value);    }    /// <summary>    /// Writes a fixed32 field value, including tag, to the stream.    /// </summary>    public void WriteFixed32(int fieldNumber, uint value) {      WriteTag(fieldNumber, WireFormat.WireType.Fixed32);      WriteRawLittleEndian32(value);    }    /// <summary>    /// Writes a bool field value, including tag, to the stream.    /// </summary>    public void WriteBool(int fieldNumber, bool value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      WriteRawByte(value ? (byte)1 : (byte)0);    }    /// <summary>    /// Writes a string field value, including tag, to the stream.    /// </summary>    public void WriteString(int fieldNumber, string value) {      WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);      // Optimise the case where we have enough space to write      // the string directly to the buffer, which should be common.      int length = Encoding.UTF8.GetByteCount(value);      WriteRawVarint32((uint) length);      if (limit - position >= length) {        Encoding.UTF8.GetBytes(value, 0, value.Length, buffer, position);        position += length;      } else {        byte[] bytes = Encoding.UTF8.GetBytes(value);        WriteRawBytes(bytes);      }    }    /// <summary>    /// Writes a group field value, including tag, to the stream.    /// </summary>    public void WriteGroup(int fieldNumber, IMessage value) {      WriteTag(fieldNumber, WireFormat.WireType.StartGroup);      value.WriteTo(this);      WriteTag(fieldNumber, WireFormat.WireType.EndGroup);    }    public void WriteUnknownGroup(int fieldNumber, UnknownFieldSet value) {      WriteTag(fieldNumber, WireFormat.WireType.StartGroup);      value.WriteTo(this);      WriteTag(fieldNumber, WireFormat.WireType.EndGroup);    }    public void WriteMessage(int fieldNumber, IMessage value) {      WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);      WriteRawVarint32((uint)value.SerializedSize);      value.WriteTo(this);    }    public void WriteBytes(int fieldNumber, ByteString value) {      // TODO(jonskeet): Optimise this! (No need to copy the bytes twice.)      WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);      byte[] bytes = value.ToByteArray();      WriteRawVarint32((uint)bytes.Length);      WriteRawBytes(bytes);    }    public void WriteUInt32(int fieldNumber, uint value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      WriteRawVarint32(value);    }    public void WriteEnum(int fieldNumber, int value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      WriteRawVarint32((uint)value);    }    public void WriteSFixed32(int fieldNumber, int value) {      WriteTag(fieldNumber, WireFormat.WireType.Fixed32);      WriteRawLittleEndian32((uint)value);    }    public void WriteSFixed64(int fieldNumber, long value) {      WriteTag(fieldNumber, WireFormat.WireType.Fixed64);      WriteRawLittleEndian64((ulong)value);    }    public void WriteSInt32(int fieldNumber, int value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      WriteRawVarint32(EncodeZigZag32(value));    }    public void WriteSInt64(int fieldNumber, long value) {      WriteTag(fieldNumber, WireFormat.WireType.Varint);      WriteRawVarint64(EncodeZigZag64(value));    }    public void WriteMessageSetExtension(int fieldNumber, IMessage value) {      WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.StartGroup);      WriteUInt32(WireFormat.MessageSetField.TypeID, (uint)fieldNumber);      WriteMessage(WireFormat.MessageSetField.Message, value);      WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.EndGroup);    }    public void WriteRawMessageSetExtension(int fieldNumber, ByteString value) {      WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.StartGroup);      WriteUInt32(WireFormat.MessageSetField.TypeID, (uint)fieldNumber);      WriteBytes(WireFormat.MessageSetField.Message, value);      WriteTag(WireFormat.MessageSetField.Item, WireFormat.WireType.EndGroup);    }    public void WriteField(FieldType fieldType, int fieldNumber, object value) {      switch (fieldType) {        case FieldType.Double: WriteDouble(fieldNumber, (double)value); break;        case FieldType.Float: WriteFloat(fieldNumber, (float)value); break;        case FieldType.Int64: WriteInt64(fieldNumber, (long)value); break;        case FieldType.UInt64: WriteUInt64(fieldNumber, (ulong)value); break;        case FieldType.Int32: WriteInt32(fieldNumber, (int)value); break;        case FieldType.Fixed64: WriteFixed64(fieldNumber, (ulong)value); break;        case FieldType.Fixed32: WriteFixed32(fieldNumber, (uint)value); break;        case FieldType.Bool: WriteBool(fieldNumber, (bool)value); break;        case FieldType.String: WriteString(fieldNumber, (string)value); break;        case FieldType.Group: WriteGroup(fieldNumber, (IMessage)value); break;        case FieldType.Message: WriteMessage(fieldNumber, (IMessage)value); break;        case FieldType.Bytes: WriteBytes(fieldNumber, (ByteString)value); break;        case FieldType.UInt32: WriteUInt32(fieldNumber, (uint)value); break;        case FieldType.SFixed32: WriteSFixed32(fieldNumber, (int)value); break;        case FieldType.SFixed64: WriteSFixed64(fieldNumber, (long)value); break;        case FieldType.SInt32: WriteSInt32(fieldNumber, (int)value); break;        case FieldType.SInt64: WriteSInt64(fieldNumber, (long)value); break;        case FieldType.Enum: WriteEnum(fieldNumber, ((EnumValueDescriptor)value).Number);          break;      }    }    public void WriteFieldNoTag(FieldType fieldType, object value) {      switch (fieldType) {        case FieldType.Double: WriteDoubleNoTag((double)value); break;        case FieldType.Float: WriteFloatNoTag((float)value); break;        case FieldType.Int64: WriteInt64NoTag((long)value); break;        case FieldType.UInt64: WriteUInt64NoTag((ulong)value); break;        case FieldType.Int32: WriteInt32NoTag((int)value); break;        case FieldType.Fixed64: WriteFixed64NoTag((ulong)value); break;        case FieldType.Fixed32: WriteFixed32NoTag((uint)value); break;        case FieldType.Bool: WriteBoolNoTag((bool)value); break;        case FieldType.String: WriteStringNoTag((string)value); break;        case FieldType.Group: WriteGroupNoTag((IMessage)value); break;        case FieldType.Message: WriteMessageNoTag((IMessage)value); break;        case FieldType.Bytes: WriteBytesNoTag((ByteString)value); break;        case FieldType.UInt32: WriteUInt32NoTag((uint)value); break;        case FieldType.SFixed32: WriteSFixed32NoTag((int)value); break;        case FieldType.SFixed64: WriteSFixed64NoTag((long)value); break;        case FieldType.SInt32: WriteSInt32NoTag((int)value); break;        case FieldType.SInt64: WriteSInt64NoTag((long)value); break;        case FieldType.Enum: WriteEnumNoTag(((EnumValueDescriptor)value).Number);          break;      }    }    #endregion    #region Writing of values without tags    /// <summary>    /// Writes a double field value, including tag, to the stream.    /// </summary>    public void WriteDoubleNoTag(double value) {      WriteRawLittleEndian64((ulong)BitConverter.DoubleToInt64Bits(value));    }    /// <summary>    /// Writes a float field value, without a tag, to the stream.    /// </summary>    public void WriteFloatNoTag(float value) {      // TODO(jonskeet): Test this on different endiannesses      byte[] rawBytes = BitConverter.GetBytes(value);      uint asInteger = BitConverter.ToUInt32(rawBytes, 0);      WriteRawLittleEndian32(asInteger);    }    /// <summary>    /// Writes a uint64 field value, without a tag, to the stream.    /// </summary>    public void WriteUInt64NoTag(ulong value) {      WriteRawVarint64(value);    }    /// <summary>    /// Writes an int64 field value, without a tag, to the stream.    /// </summary>    public void WriteInt64NoTag(long value) {      WriteRawVarint64((ulong)value);    }    /// <summary>    /// Writes an int32 field value, without a tag, to the stream.    /// </summary>    public void WriteInt32NoTag(int value) {      if (value >= 0) {        WriteRawVarint32((uint)value);      } else {        // Must sign-extend.        WriteRawVarint64((ulong)value);      }    }    /// <summary>    /// Writes a fixed64 field value, without a tag, to the stream.    /// </summary>    public void WriteFixed64NoTag(ulong value) {      WriteRawLittleEndian64(value);    }    /// <summary>    /// Writes a fixed32 field value, without a tag, to the stream.    /// </summary>    public void WriteFixed32NoTag(uint value) {      WriteRawLittleEndian32(value);    }    /// <summary>    /// Writes a bool field value, without a tag, to the stream.    /// </summary>    public void WriteBoolNoTag(bool value) {      WriteRawByte(value ? (byte)1 : (byte)0);    }    /// <summary>    /// Writes a string field value, without a tag, to the stream.    /// </summary>    public void WriteStringNoTag(string value) {      // Optimise the case where we have enough space to write      // the string directly to the buffer, which should be common.      int length = Encoding.UTF8.GetByteCount(value);      WriteRawVarint32((uint)length);      if (limit - position >= length) {        Encoding.UTF8.GetBytes(value, 0, value.Length, buffer, position);        position += length;      } else {        byte[] bytes = Encoding.UTF8.GetBytes(value);        WriteRawBytes(bytes);      }    }    /// <summary>    /// Writes a group field value, without a tag, to the stream.    /// </summary>    public void WriteGroupNoTag(IMessage value) {      value.WriteTo(this);    }    public void WriteMessageNoTag(IMessage value) {      WriteRawVarint32((uint)value.SerializedSize);      value.WriteTo(this);    }    public void WriteBytesNoTag(ByteString value) {      // TODO(jonskeet): Optimise this! (No need to copy the bytes twice.)      byte[] bytes = value.ToByteArray();      WriteRawVarint32((uint)bytes.Length);      WriteRawBytes(bytes);    }    public void WriteUInt32NoTag(uint value) {      WriteRawVarint32(value);    }    public void WriteEnumNoTag(int value) {      WriteRawVarint32((uint)value);    }    public void WriteSFixed32NoTag(int value) {      WriteRawLittleEndian32((uint)value);    }    public void WriteSFixed64NoTag(long value) {      WriteRawLittleEndian64((ulong)value);    }    public void WriteSInt32NoTag(int value) {      WriteRawVarint32(EncodeZigZag32(value));    }    public void WriteSInt64NoTag(long value) {      WriteRawVarint64(EncodeZigZag64(value));    }    #endregion    #region Underlying writing primitives    /// <summary>    /// Encodes and writes a tag.    /// </summary>    public void WriteTag(int fieldNumber, WireFormat.WireType type) {      WriteRawVarint32(WireFormat.MakeTag(fieldNumber, type));    }    private void SlowWriteRawVarint32(uint value) {      while (true) {        if ((value & ~0x7F) == 0) {          WriteRawByte(value);          return;        } else {          WriteRawByte((value & 0x7F) | 0x80);          value >>= 7;        }      }    }    /// <summary>    /// Writes a 32 bit value as a varint. The fast route is taken when    /// there's enough buffer space left to whizz through without checking    /// for each byte; otherwise, we resort to calling WriteRawByte each time.    /// </summary>    public void WriteRawVarint32(uint value) {      if (position + 5 > limit) {        SlowWriteRawVarint32(value);        return;      }      while (true) {        if ((value & ~0x7F) == 0) {          buffer[position++] = (byte) value;          return;        } else {          buffer[position++] = (byte)((value & 0x7F) | 0x80);          value >>= 7;        }      }    }    public void WriteRawVarint64(ulong value) {      while (true) {        if ((value & ~0x7FUL) == 0) {          WriteRawByte((uint)value);          return;        } else {          WriteRawByte(((uint)value & 0x7F) | 0x80);          value >>= 7;        }      }    }    public void WriteRawLittleEndian32(uint value) {      WriteRawByte((byte)value);      WriteRawByte((byte)(value >> 8));      WriteRawByte((byte)(value >> 16));      WriteRawByte((byte)(value >> 24));    }    public void WriteRawLittleEndian64(ulong value) {      WriteRawByte((byte)value);      WriteRawByte((byte)(value >> 8));      WriteRawByte((byte)(value >> 16));      WriteRawByte((byte)(value >> 24));      WriteRawByte((byte)(value >> 32));      WriteRawByte((byte)(value >> 40));      WriteRawByte((byte)(value >> 48));      WriteRawByte((byte)(value >> 56));    }    public void WriteRawByte(byte value) {      if (position == limit) {        RefreshBuffer();      }      buffer[position++] = value;    }    public void WriteRawByte(uint value) {      WriteRawByte((byte)value);    }    /// <summary>    /// Writes out an array of bytes.    /// </summary>    public void WriteRawBytes(byte[] value) {      WriteRawBytes(value, 0, value.Length);    }    /// <summary>    /// Writes out part of an array of bytes.    /// </summary>    public void WriteRawBytes(byte[] value, int offset, int length) {      if (limit - position >= length) {        Array.Copy(value, offset, buffer, position, length);        // We have room in the current buffer.        position += length;      } else {        // Write extends past current buffer.  Fill the rest of this buffer and        // flush.        int bytesWritten = limit - position;        Array.Copy(value, offset, buffer, position, bytesWritten);        offset += bytesWritten;        length -= bytesWritten;        position = limit;        RefreshBuffer();        // Now deal with the rest.        // Since we have an output stream, this is our buffer        // and buffer offset == 0        if (length <= limit) {          // Fits in new buffer.          Array.Copy(value, offset, buffer, 0, length);          position = length;        } else {          // Write is very big.  Let's do it all at once.          output.Write(value, offset, length);        }      }    }    #endregion    #region Size computations    const int LittleEndian64Size = 8;    const int LittleEndian32Size = 4;    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// double field, including the tag.    /// </summary>    public static int ComputeDoubleSize(int fieldNumber, double value) {      return ComputeTagSize(fieldNumber) + LittleEndian64Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// float field, including the tag.    /// </summary>    public static int ComputeFloatSize(int fieldNumber, float value) {      return ComputeTagSize(fieldNumber) + LittleEndian32Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// uint64 field, including the tag.    /// </summary>    public static int ComputeUInt64Size(int fieldNumber, ulong value) {      return ComputeTagSize(fieldNumber) + ComputeRawVarint64Size(value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// int64 field, including the tag.    /// </summary>    public static int ComputeInt64Size(int fieldNumber, long value) {      return ComputeTagSize(fieldNumber) + ComputeRawVarint64Size((ulong)value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// int32 field, including the tag.    /// </summary>    public static int ComputeInt32Size(int fieldNumber, int value) {      if (value >= 0) {        return ComputeTagSize(fieldNumber) + ComputeRawVarint32Size((uint)value);      } else {        // Must sign-extend.        return ComputeTagSize(fieldNumber) + 10;      }    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// fixed64 field, including the tag.    /// </summary>    public static int ComputeFixed64Size(int fieldNumber, ulong value) {      return ComputeTagSize(fieldNumber) + LittleEndian64Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// fixed32 field, including the tag.    /// </summary>    public static int ComputeFixed32Size(int fieldNumber, uint value) {      return ComputeTagSize(fieldNumber) + LittleEndian32Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// bool field, including the tag.    /// </summary>    public static int ComputeBoolSize(int fieldNumber, bool value) {      return ComputeTagSize(fieldNumber) + 1;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// string field, including the tag.    /// </summary>    public static int ComputeStringSize(int fieldNumber, String value) {      int byteArraySize = Encoding.UTF8.GetByteCount(value);      return ComputeTagSize(fieldNumber) +             ComputeRawVarint32Size((uint)byteArraySize) +             byteArraySize;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// group field, including the tag.    /// </summary>    public static int ComputeGroupSize(int fieldNumber, IMessage value) {      return ComputeTagSize(fieldNumber) * 2 + value.SerializedSize;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// group field represented by an UnknownFieldSet, including the tag.    /// </summary>    public static int ComputeUnknownGroupSize(int fieldNumber,                                              UnknownFieldSet value) {      return ComputeTagSize(fieldNumber) * 2 + value.SerializedSize;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// embedded message field, including the tag.    /// </summary>    public static int ComputeMessageSize(int fieldNumber, IMessage value) {      int size = value.SerializedSize;      return ComputeTagSize(fieldNumber) + ComputeRawVarint32Size((uint)size) + size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// bytes field, including the tag.    /// </summary>    public static int ComputeBytesSize(int fieldNumber, ByteString value) {      return ComputeTagSize(fieldNumber) +             ComputeRawVarint32Size((uint)value.Length) +             value.Length;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// uint32 field, including the tag.    /// </summary>    public static int ComputeUInt32Size(int fieldNumber, uint value) {      return ComputeTagSize(fieldNumber) + ComputeRawVarint32Size(value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// enum field, including the tag. The caller is responsible for    /// converting the enum value to its numeric value.    /// </summary>    public static int ComputeEnumSize(int fieldNumber, int value) {      return ComputeTagSize(fieldNumber) + ComputeRawVarint32Size((uint)value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// sfixed32 field, including the tag.    /// </summary>    public static int ComputeSFixed32Size(int fieldNumber, int value) {      return ComputeTagSize(fieldNumber) + LittleEndian32Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// sfixed64 field, including the tag.    /// </summary>    public static int ComputeSFixed64Size(int fieldNumber, long value) {      return ComputeTagSize(fieldNumber) + LittleEndian64Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// sint32 field, including the tag.    /// </summary>    public static int ComputeSInt32Size(int fieldNumber, int value) {      return ComputeTagSize(fieldNumber) + ComputeRawVarint32Size(EncodeZigZag32(value));    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// sint64 field, including the tag.    /// </summary>    public static int ComputeSInt64Size(int fieldNumber, long value) {      return ComputeTagSize(fieldNumber) + ComputeRawVarint64Size(EncodeZigZag64(value));    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// double field, including the tag.    /// </summary>    public static int ComputeDoubleSizeNoTag(double value) {      return LittleEndian64Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// float field, including the tag.    /// </summary>    public static int ComputeFloatSizeNoTag(float value) {      return LittleEndian32Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// uint64 field, including the tag.    /// </summary>    public static int ComputeUInt64SizeNoTag(ulong value) {      return ComputeRawVarint64Size(value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// int64 field, including the tag.    /// </summary>    public static int ComputeInt64SizeNoTag(long value) {      return ComputeRawVarint64Size((ulong)value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// int32 field, including the tag.    /// </summary>    public static int ComputeInt32SizeNoTag(int value) {      if (value >= 0) {        return ComputeRawVarint32Size((uint)value);      } else {        // Must sign-extend.        return 10;      }    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// fixed64 field, including the tag.    /// </summary>    public static int ComputeFixed64SizeNoTag(ulong value) {      return LittleEndian64Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// fixed32 field, including the tag.    /// </summary>    public static int ComputeFixed32SizeNoTag(uint value) {      return LittleEndian32Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// bool field, including the tag.    /// </summary>    public static int ComputeBoolSizeNoTag(bool value) {      return 1;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// string field, including the tag.    /// </summary>    public static int ComputeStringSizeNoTag(String value) {      int byteArraySize = Encoding.UTF8.GetByteCount(value);      return ComputeRawVarint32Size((uint)byteArraySize) +             byteArraySize;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// group field, including the tag.    /// </summary>    public static int ComputeGroupSizeNoTag(IMessage value) {      return value.SerializedSize;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// group field represented by an UnknownFieldSet, including the tag.    /// </summary>    public static int ComputeUnknownGroupSizeNoTag(UnknownFieldSet value) {      return value.SerializedSize;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// embedded message field, including the tag.    /// </summary>    public static int ComputeMessageSizeNoTag(IMessage value) {      int size = value.SerializedSize;      return ComputeRawVarint32Size((uint)size) + size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// bytes field, including the tag.    /// </summary>    public static int ComputeBytesSizeNoTag(ByteString value) {      return ComputeRawVarint32Size((uint)value.Length) +             value.Length;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// uint32 field, including the tag.    /// </summary>    public static int ComputeUInt32SizeNoTag(uint value) {      return ComputeRawVarint32Size(value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// enum field, including the tag. The caller is responsible for    /// converting the enum value to its numeric value.    /// </summary>    public static int ComputeEnumSizeNoTag(int value) {      return ComputeRawVarint32Size((uint)value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// sfixed32 field, including the tag.    /// </summary>    public static int ComputeSFixed32SizeNoTag(int value) {      return LittleEndian32Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// sfixed64 field, including the tag.    /// </summary>    public static int ComputeSFixed64SizeNoTag(long value) {      return LittleEndian64Size;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// sint32 field, including the tag.    /// </summary>    public static int ComputeSInt32SizeNoTag(int value) {      return ComputeRawVarint32Size(EncodeZigZag32(value));    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// sint64 field, including the tag.    /// </summary>    public static int ComputeSInt64SizeNoTag(long value) {      return ComputeRawVarint64Size(EncodeZigZag64(value));    }    /*     * Compute the number of bytes that would be needed to encode a     * MessageSet extension to the stream.  For historical reasons,     * the wire format differs from normal fields.     */    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// MessageSet extension to the stream. For historical reasons,    /// the wire format differs from normal fields.    /// </summary>    public static int ComputeMessageSetExtensionSize(int fieldNumber, IMessage value) {      return ComputeTagSize(WireFormat.MessageSetField.Item) * 2 +             ComputeUInt32Size(WireFormat.MessageSetField.TypeID, (uint) fieldNumber) +             ComputeMessageSize(WireFormat.MessageSetField.Message, value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode an    /// unparsed MessageSet extension field to the stream. For    /// historical reasons, the wire format differs from normal fields.    /// </summary>    public static int ComputeRawMessageSetExtensionSize(int fieldNumber, ByteString value) {      return ComputeTagSize(WireFormat.MessageSetField.Item) * 2 +             ComputeUInt32Size(WireFormat.MessageSetField.TypeID, (uint) fieldNumber) +             ComputeBytesSize(WireFormat.MessageSetField.Message, value);    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a varint.    /// </summary>    public static int ComputeRawVarint32Size(uint value) {      if ((value & (0xffffffff << 7)) == 0) return 1;      if ((value & (0xffffffff << 14)) == 0) return 2;      if ((value & (0xffffffff << 21)) == 0) return 3;      if ((value & (0xffffffff << 28)) == 0) return 4;      return 5;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a varint.    /// </summary>    public static int ComputeRawVarint64Size(ulong value) {      if ((value & (0xffffffffffffffffL << 7)) == 0) return 1;      if ((value & (0xffffffffffffffffL << 14)) == 0) return 2;      if ((value & (0xffffffffffffffffL << 21)) == 0) return 3;      if ((value & (0xffffffffffffffffL << 28)) == 0) return 4;      if ((value & (0xffffffffffffffffL << 35)) == 0) return 5;      if ((value & (0xffffffffffffffffL << 42)) == 0) return 6;      if ((value & (0xffffffffffffffffL << 49)) == 0) return 7;      if ((value & (0xffffffffffffffffL << 56)) == 0) return 8;      if ((value & (0xffffffffffffffffL << 63)) == 0) return 9;      return 10;    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// field of arbitrary type, including the tag, to the stream.    /// </summary>    public static int ComputeFieldSize(FieldType fieldType, int fieldNumber, Object value) {      switch (fieldType) {        case FieldType.Double: return ComputeDoubleSize(fieldNumber, (double)value);        case FieldType.Float: return ComputeFloatSize(fieldNumber, (float)value);        case FieldType.Int64: return ComputeInt64Size(fieldNumber, (long)value);        case FieldType.UInt64: return ComputeUInt64Size(fieldNumber, (ulong)value);        case FieldType.Int32: return ComputeInt32Size(fieldNumber, (int)value);        case FieldType.Fixed64: return ComputeFixed64Size(fieldNumber, (ulong)value);        case FieldType.Fixed32: return ComputeFixed32Size(fieldNumber, (uint)value);        case FieldType.Bool: return ComputeBoolSize(fieldNumber, (bool)value);        case FieldType.String: return ComputeStringSize(fieldNumber, (string)value);        case FieldType.Group: return ComputeGroupSize(fieldNumber, (IMessage)value);        case FieldType.Message: return ComputeMessageSize(fieldNumber, (IMessage)value);        case FieldType.Bytes: return ComputeBytesSize(fieldNumber, (ByteString)value);        case FieldType.UInt32: return ComputeUInt32Size(fieldNumber, (uint)value);        case FieldType.SFixed32: return ComputeSFixed32Size(fieldNumber, (int)value);        case FieldType.SFixed64: return ComputeSFixed64Size(fieldNumber, (long)value);        case FieldType.SInt32: return ComputeSInt32Size(fieldNumber, (int)value);        case FieldType.SInt64: return ComputeSInt64Size(fieldNumber, (long)value);        case FieldType.Enum: return ComputeEnumSize(fieldNumber, ((EnumValueDescriptor)value).Number);        default:          throw new ArgumentOutOfRangeException("Invalid field type " + fieldType);      }    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a    /// field of arbitrary type, excluding the tag, to the stream.    /// </summary>    public static int ComputeFieldSizeNoTag(FieldType fieldType, Object value) {      switch (fieldType) {        case FieldType.Double: return ComputeDoubleSizeNoTag((double)value);        case FieldType.Float: return ComputeFloatSizeNoTag((float)value);        case FieldType.Int64: return ComputeInt64SizeNoTag((long)value);        case FieldType.UInt64: return ComputeUInt64SizeNoTag((ulong)value);        case FieldType.Int32: return ComputeInt32SizeNoTag((int)value);        case FieldType.Fixed64: return ComputeFixed64SizeNoTag((ulong)value);        case FieldType.Fixed32: return ComputeFixed32SizeNoTag((uint)value);        case FieldType.Bool: return ComputeBoolSizeNoTag((bool)value);        case FieldType.String: return ComputeStringSizeNoTag((string)value);        case FieldType.Group: return ComputeGroupSizeNoTag((IMessage)value);        case FieldType.Message: return ComputeMessageSizeNoTag((IMessage)value);        case FieldType.Bytes: return ComputeBytesSizeNoTag((ByteString)value);        case FieldType.UInt32: return ComputeUInt32SizeNoTag((uint)value);        case FieldType.SFixed32: return ComputeSFixed32SizeNoTag((int)value);        case FieldType.SFixed64: return ComputeSFixed64SizeNoTag((long)value);        case FieldType.SInt32: return ComputeSInt32SizeNoTag((int)value);        case FieldType.SInt64: return ComputeSInt64SizeNoTag((long)value);        case FieldType.Enum: return ComputeEnumSizeNoTag(((EnumValueDescriptor)value).Number);        default:          throw new ArgumentOutOfRangeException("Invalid field type " + fieldType);      }    }    /// <summary>    /// Compute the number of bytes that would be needed to encode a tag.    /// </summary>    public static int ComputeTagSize(int fieldNumber) {      return ComputeRawVarint32Size(WireFormat.MakeTag(fieldNumber, 0));    }    #endregion    /// <summary>    /// Encode a 32-bit value with ZigZag encoding.    /// </summary>    /// <remarks>    /// ZigZag encodes signed integers into values that can be efficiently    /// encoded with varint.  (Otherwise, negative values must be     /// sign-extended to 64 bits to be varint encoded, thus always taking    /// 10 bytes on the wire.)    /// </remarks>    public static uint EncodeZigZag32(int n) {      // Note:  the right-shift must be arithmetic      return (uint)((n << 1) ^ (n >> 31));    }    /// <summary>    /// Encode a 64-bit value with ZigZag encoding.    /// </summary>    /// <remarks>    /// ZigZag encodes signed integers into values that can be efficiently    /// encoded with varint.  (Otherwise, negative values must be     /// sign-extended to 64 bits to be varint encoded, thus always taking    /// 10 bytes on the wire.)    /// </remarks>    public static ulong EncodeZigZag64(long n) {      return (ulong)((n << 1) ^ (n >> 63));    }    private void RefreshBuffer() {      if (output == null) {        // We're writing to a single buffer.        throw new OutOfSpaceException();      }      // Since we have an output stream, this is our buffer      // and buffer offset == 0      output.Write(buffer, 0, position);      position = 0;    }    /// <summary>    /// Indicates that a CodedOutputStream wrapping a flat byte array    /// ran out of space.    /// </summary>    public sealed class OutOfSpaceException : IOException {      internal OutOfSpaceException()        : base("CodedOutputStream was writing to a flat byte array and ran out of space.") {      }    }    public void Flush() {      if (output != null) {        RefreshBuffer();      }    }    /// <summary>    /// Verifies that SpaceLeft returns zero. It's common to create a byte array    /// that is exactly big enough to hold a message, then write to it with    /// a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that    /// the message was actually as big as expected, which can help bugs.    /// </summary>    public void CheckNoSpaceLeft() {      if (SpaceLeft != 0) {        throw new InvalidOperationException("Did not write as much data as expected.");      }    }    /// <summary>    /// If writing to a flat array, returns the space left in the array. Otherwise,    /// throws an InvalidOperationException.    /// </summary>    public int SpaceLeft {      get {        if (output == null) {          return limit - position;        } else {          throw new InvalidOperationException(            "SpaceLeft can only be called on CodedOutputStreams that are " +            "writing to a flat array.");        }      }    }  }}
 |