| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472 | // Protocol Buffers - Google's data interchange format// Copyright 2008 Google Inc.  All rights reserved.// https://developers.google.com/protocol-buffers///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:////     * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//     * Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.//     * Neither the name of Google Inc. nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE./** * @fileoverview Test cases for jspb's binary protocol buffer decoder. * * There are two particular magic numbers that need to be pointed out - * 2^64-1025 is the largest number representable as both a double and an * unsigned 64-bit integer, and 2^63-513 is the largest number representable as * both a double and a signed 64-bit integer. * * Test suite is written using Jasmine -- see http://jasmine.github.io/ * * @author aappleby@google.com (Austin Appleby) */goog.require('goog.testing.asserts');goog.require('jspb.BinaryConstants');goog.require('jspb.BinaryDecoder');goog.require('jspb.BinaryEncoder');goog.require('jspb.utils');/** * Tests encoding and decoding of unsigned types. * @param {Function} readValue * @param {Function} writeValue * @param {number} epsilon * @param {number} upperLimit * @param {Function} filter * @suppress {missingProperties|visibility} */function doTestUnsignedValue(readValue,    writeValue, epsilon, upperLimit, filter) {  var encoder = new jspb.BinaryEncoder();  // Encode zero and limits.  writeValue.call(encoder, filter(0));  writeValue.call(encoder, filter(epsilon));  writeValue.call(encoder, filter(upperLimit));  // Encode positive values.  for (var cursor = epsilon; cursor < upperLimit; cursor *= 1.1) {    writeValue.call(encoder, filter(cursor));  }  var decoder = jspb.BinaryDecoder.alloc(encoder.end());  // Check zero and limits.  assertEquals(filter(0), readValue.call(decoder));  assertEquals(filter(epsilon), readValue.call(decoder));  assertEquals(filter(upperLimit), readValue.call(decoder));  // Check positive values.  for (var cursor = epsilon; cursor < upperLimit; cursor *= 1.1) {    if (filter(cursor) != readValue.call(decoder)) throw 'fail!';  }  // Encoding values outside the valid range should assert.  assertThrows(function() {writeValue.call(encoder, -1);});  assertThrows(function() {writeValue.call(encoder, upperLimit * 1.1);});}/** * Tests encoding and decoding of signed types. * @param {Function} readValue * @param {Function} writeValue * @param {number} epsilon * @param {number} lowerLimit * @param {number} upperLimit * @param {Function} filter * @suppress {missingProperties} */function doTestSignedValue(readValue,    writeValue, epsilon, lowerLimit, upperLimit, filter) {  var encoder = new jspb.BinaryEncoder();  // Encode zero and limits.  writeValue.call(encoder, filter(lowerLimit));  writeValue.call(encoder, filter(-epsilon));  writeValue.call(encoder, filter(0));  writeValue.call(encoder, filter(epsilon));  writeValue.call(encoder, filter(upperLimit));  var inputValues = [];  // Encode negative values.  for (var cursor = lowerLimit; cursor < -epsilon; cursor /= 1.1) {    var val = filter(cursor);    writeValue.call(encoder, val);    inputValues.push(val);  }  // Encode positive values.  for (var cursor = epsilon; cursor < upperLimit; cursor *= 1.1) {    var val = filter(cursor);    writeValue.call(encoder, val);    inputValues.push(val);  }  var decoder = jspb.BinaryDecoder.alloc(encoder.end());  // Check zero and limits.  assertEquals(filter(lowerLimit), readValue.call(decoder));  assertEquals(filter(-epsilon), readValue.call(decoder));  assertEquals(filter(0), readValue.call(decoder));  assertEquals(filter(epsilon), readValue.call(decoder));  assertEquals(filter(upperLimit), readValue.call(decoder));  // Verify decoded values.  for (var i = 0; i < inputValues.length; i++) {    assertEquals(inputValues[i], readValue.call(decoder));  }  // Encoding values outside the valid range should assert.  assertThrows(function() {writeValue.call(encoder, lowerLimit * 1.1);});  assertThrows(function() {writeValue.call(encoder, upperLimit * 1.1);});}describe('binaryDecoderTest', function() {  /**   * Tests the decoder instance cache.   */  it('testInstanceCache', /** @suppress {visibility} */ function() {    // Empty the instance caches.    jspb.BinaryDecoder.instanceCache_ = [];    // Allocating and then freeing a decoder should put it in the instance    // cache.    jspb.BinaryDecoder.alloc().free();    assertEquals(1, jspb.BinaryDecoder.instanceCache_.length);    // Allocating and then freeing three decoders should leave us with three in    // the cache.    var decoder1 = jspb.BinaryDecoder.alloc();    var decoder2 = jspb.BinaryDecoder.alloc();    var decoder3 = jspb.BinaryDecoder.alloc();    decoder1.free();    decoder2.free();    decoder3.free();    assertEquals(3, jspb.BinaryDecoder.instanceCache_.length);  });  describe('varint64', function() {    var /** !jspb.BinaryEncoder */ encoder;    var /** !jspb.BinaryDecoder */ decoder;    var hashA = String.fromCharCode(0x00, 0x00, 0x00, 0x00,                                    0x00, 0x00, 0x00, 0x00);    var hashB = String.fromCharCode(0x12, 0x34, 0x00, 0x00,                                    0x00, 0x00, 0x00, 0x00);    var hashC = String.fromCharCode(0x12, 0x34, 0x56, 0x78,                                    0x87, 0x65, 0x43, 0x21);    var hashD = String.fromCharCode(0xFF, 0xFF, 0xFF, 0xFF,                                    0xFF, 0xFF, 0xFF, 0xFF);    beforeEach(function() {      encoder = new jspb.BinaryEncoder();      encoder.writeVarintHash64(hashA);      encoder.writeVarintHash64(hashB);      encoder.writeVarintHash64(hashC);      encoder.writeVarintHash64(hashD);      encoder.writeFixedHash64(hashA);      encoder.writeFixedHash64(hashB);      encoder.writeFixedHash64(hashC);      encoder.writeFixedHash64(hashD);      decoder = jspb.BinaryDecoder.alloc(encoder.end());    });    it('reads 64-bit integers as hash strings', function() {      assertEquals(hashA, decoder.readVarintHash64());      assertEquals(hashB, decoder.readVarintHash64());      assertEquals(hashC, decoder.readVarintHash64());      assertEquals(hashD, decoder.readVarintHash64());      assertEquals(hashA, decoder.readFixedHash64());      assertEquals(hashB, decoder.readFixedHash64());      assertEquals(hashC, decoder.readFixedHash64());      assertEquals(hashD, decoder.readFixedHash64());    });    it('reads split 64 bit integers', function() {      function hexJoin(bitsLow, bitsHigh) {        return `0x${(bitsHigh >>> 0).toString(16)}:0x${            (bitsLow >>> 0).toString(16)}`;      }      function hexJoinHash(hash64) {        jspb.utils.splitHash64(hash64);        return hexJoin(jspb.utils.split64Low, jspb.utils.split64High);      }      expect(decoder.readSplitVarint64(hexJoin)).toEqual(hexJoinHash(hashA));      expect(decoder.readSplitVarint64(hexJoin)).toEqual(hexJoinHash(hashB));      expect(decoder.readSplitVarint64(hexJoin)).toEqual(hexJoinHash(hashC));      expect(decoder.readSplitVarint64(hexJoin)).toEqual(hexJoinHash(hashD));      expect(decoder.readSplitFixed64(hexJoin)).toEqual(hexJoinHash(hashA));      expect(decoder.readSplitFixed64(hexJoin)).toEqual(hexJoinHash(hashB));      expect(decoder.readSplitFixed64(hexJoin)).toEqual(hexJoinHash(hashC));      expect(decoder.readSplitFixed64(hexJoin)).toEqual(hexJoinHash(hashD));    });  });  describe('sint64', function() {    var /** !jspb.BinaryDecoder */ decoder;    var hashA =        String.fromCharCode(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00);    var hashB =        String.fromCharCode(0x12, 0x34, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00);    var hashC =        String.fromCharCode(0x12, 0x34, 0x56, 0x78, 0x87, 0x65, 0x43, 0x21);    var hashD =        String.fromCharCode(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF);    beforeEach(function() {      var encoder = new jspb.BinaryEncoder();      encoder.writeZigzagVarintHash64(hashA);      encoder.writeZigzagVarintHash64(hashB);      encoder.writeZigzagVarintHash64(hashC);      encoder.writeZigzagVarintHash64(hashD);      decoder = jspb.BinaryDecoder.alloc(encoder.end());    });    it('reads 64-bit integers as decimal strings', function() {      const signed = true;      expect(decoder.readZigzagVarint64String())          .toEqual(jspb.utils.hash64ToDecimalString(hashA, signed));      expect(decoder.readZigzagVarint64String())          .toEqual(jspb.utils.hash64ToDecimalString(hashB, signed));      expect(decoder.readZigzagVarint64String())          .toEqual(jspb.utils.hash64ToDecimalString(hashC, signed));      expect(decoder.readZigzagVarint64String())          .toEqual(jspb.utils.hash64ToDecimalString(hashD, signed));    });    it('reads 64-bit integers as hash strings', function() {      expect(decoder.readZigzagVarintHash64()).toEqual(hashA);      expect(decoder.readZigzagVarintHash64()).toEqual(hashB);      expect(decoder.readZigzagVarintHash64()).toEqual(hashC);      expect(decoder.readZigzagVarintHash64()).toEqual(hashD);    });    it('reads split 64 bit zigzag integers', function() {      function hexJoin(bitsLow, bitsHigh) {        return `0x${(bitsHigh >>> 0).toString(16)}:0x${            (bitsLow >>> 0).toString(16)}`;      }      function hexJoinHash(hash64) {        jspb.utils.splitHash64(hash64);        return hexJoin(jspb.utils.split64Low, jspb.utils.split64High);      }      expect(decoder.readSplitZigzagVarint64(hexJoin))          .toEqual(hexJoinHash(hashA));      expect(decoder.readSplitZigzagVarint64(hexJoin))          .toEqual(hexJoinHash(hashB));      expect(decoder.readSplitZigzagVarint64(hexJoin))          .toEqual(hexJoinHash(hashC));      expect(decoder.readSplitZigzagVarint64(hexJoin))          .toEqual(hexJoinHash(hashD));    });    it('does zigzag encoding properly', function() {      // Test cases direcly from the protobuf dev guide.      // https://engdoc.corp.google.com/eng/howto/protocolbuffers/developerguide/encoding.shtml?cl=head#types      var testCases = [        {original: '0', zigzag: '0'},        {original: '-1', zigzag: '1'},        {original: '1', zigzag: '2'},        {original: '-2', zigzag: '3'},        {original: '2147483647', zigzag: '4294967294'},        {original: '-2147483648', zigzag: '4294967295'},        // 64-bit extremes, not in dev guide.        {original: '9223372036854775807', zigzag: '18446744073709551614'},        {original: '-9223372036854775808', zigzag: '18446744073709551615'},      ];      var encoder = new jspb.BinaryEncoder();      testCases.forEach(function(c) {        encoder.writeZigzagVarint64String(c.original);      });      var buffer = encoder.end();      var zigzagDecoder = jspb.BinaryDecoder.alloc(buffer);      var varintDecoder = jspb.BinaryDecoder.alloc(buffer);      testCases.forEach(function(c) {        expect(zigzagDecoder.readZigzagVarint64String()).toEqual(c.original);        expect(varintDecoder.readUnsignedVarint64String()).toEqual(c.zigzag);      });    });  });  /**   * Tests reading and writing large strings   */  it('testLargeStrings', function() {    var encoder = new jspb.BinaryEncoder();    var len = 150000;    var long_string = '';    for (var i = 0; i < len; i++) {      long_string += 'a';    }    encoder.writeString(long_string);    var decoder = jspb.BinaryDecoder.alloc(encoder.end());    assertEquals(long_string, decoder.readString(len));  });  /**   * Test encoding and decoding utf-8.   */   it('testUtf8', function() {    var encoder = new jspb.BinaryEncoder();    var ascii = "ASCII should work in 3, 2, 1...";    var utf8_two_bytes = "©";    var utf8_three_bytes = "❄";    var utf8_four_bytes = "😁";    encoder.writeString(ascii);    encoder.writeString(utf8_two_bytes);    encoder.writeString(utf8_three_bytes);    encoder.writeString(utf8_four_bytes);    var decoder = jspb.BinaryDecoder.alloc(encoder.end());    assertEquals(ascii, decoder.readString(ascii.length));    assertEquals(utf8_two_bytes, decoder.readString(utf8_two_bytes.length));    assertEquals(utf8_three_bytes, decoder.readString(utf8_three_bytes.length));    assertEquals(utf8_four_bytes, decoder.readString(utf8_four_bytes.length));   });  /**   * Verifies that misuse of the decoder class triggers assertions.   */  it('testDecodeErrors', function() {    // Reading a value past the end of the stream should trigger an assertion.    var decoder = jspb.BinaryDecoder.alloc([0, 1, 2]);    assertThrows(function() {decoder.readUint64()});    // Overlong varints should trigger assertions.    decoder.setBlock([255, 255, 255, 255, 255, 255,                      255, 255, 255, 255, 255, 0]);    assertThrows(function() {decoder.readUnsignedVarint64()});    decoder.reset();    assertThrows(function() {decoder.readSignedVarint64()});    decoder.reset();    assertThrows(function() {decoder.readZigzagVarint64()});    decoder.reset();    assertThrows(function() {decoder.readUnsignedVarint32()});  });  /**   * Tests encoding and decoding of unsigned integers.   */  it('testUnsignedIntegers', function() {    doTestUnsignedValue(        jspb.BinaryDecoder.prototype.readUint8,        jspb.BinaryEncoder.prototype.writeUint8,        1, 0xFF, Math.round);    doTestUnsignedValue(        jspb.BinaryDecoder.prototype.readUint16,        jspb.BinaryEncoder.prototype.writeUint16,        1, 0xFFFF, Math.round);    doTestUnsignedValue(        jspb.BinaryDecoder.prototype.readUint32,        jspb.BinaryEncoder.prototype.writeUint32,        1, 0xFFFFFFFF, Math.round);    doTestUnsignedValue(        jspb.BinaryDecoder.prototype.readUint64,        jspb.BinaryEncoder.prototype.writeUint64,        1, Math.pow(2, 64) - 1025, Math.round);  });  /**   * Tests encoding and decoding of signed integers.   */  it('testSignedIntegers', function() {    doTestSignedValue(        jspb.BinaryDecoder.prototype.readInt8,        jspb.BinaryEncoder.prototype.writeInt8,        1, -0x80, 0x7F, Math.round);    doTestSignedValue(        jspb.BinaryDecoder.prototype.readInt16,        jspb.BinaryEncoder.prototype.writeInt16,        1, -0x8000, 0x7FFF, Math.round);    doTestSignedValue(        jspb.BinaryDecoder.prototype.readInt32,        jspb.BinaryEncoder.prototype.writeInt32,        1, -0x80000000, 0x7FFFFFFF, Math.round);    doTestSignedValue(        jspb.BinaryDecoder.prototype.readInt64,        jspb.BinaryEncoder.prototype.writeInt64,        1, -Math.pow(2, 63), Math.pow(2, 63) - 513, Math.round);  });  /**   * Tests encoding and decoding of floats.   */  it('testFloats', function() {    /**     * @param {number} x     * @return {number}     */    function truncate(x) {      var temp = new Float32Array(1);      temp[0] = x;      return temp[0];    }    doTestSignedValue(        jspb.BinaryDecoder.prototype.readFloat,        jspb.BinaryEncoder.prototype.writeFloat,        jspb.BinaryConstants.FLOAT32_EPS,        -jspb.BinaryConstants.FLOAT32_MAX,        jspb.BinaryConstants.FLOAT32_MAX,        truncate);    doTestSignedValue(        jspb.BinaryDecoder.prototype.readDouble,        jspb.BinaryEncoder.prototype.writeDouble,        jspb.BinaryConstants.FLOAT64_EPS * 10,        -jspb.BinaryConstants.FLOAT64_MAX,        jspb.BinaryConstants.FLOAT64_MAX,        function(x) { return x; });  });});
 |