| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860 | // Protocol Buffers - Google's data interchange format// Copyright 2014 Google Inc.  All rights reserved.// https://developers.google.com/protocol-buffers///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are// met:////     * Redistributions of source code must retain the above copyright// notice, this list of conditions and the following disclaimer.//     * Redistributions in binary form must reproduce the above// copyright notice, this list of conditions and the following disclaimer// in the documentation and/or other materials provided with the// distribution.//     * Neither the name of Google Inc. nor the names of its// contributors may be used to endorse or promote products derived from// this software without specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.#include "protobuf.h"// -----------------------------------------------------------------------------// Basic map operations on top of upb's strtable.//// Note that we roll our own `Map` container here because, as for// `RepeatedField`, we want a strongly-typed container. This is so that any user// errors due to incorrect map key or value types are raised as close as// possible to the error site, rather than at some deferred point (e.g.,// serialization).//// We build our `Map` on top of upb_strtable so that we're able to take// advantage of the native_slot storage abstraction, as RepeatedField does.// (This is not quite a perfect mapping -- see the key conversions below -- but// gives us full support and error-checking for all value types for free.)// -----------------------------------------------------------------------------// Map values are stored using the native_slot abstraction (as with repeated// field values), but keys are a bit special. Since we use a strtable, we need// to store keys as sequences of bytes such that equality of those bytes maps// one-to-one to equality of keys. We store strings directly (i.e., they map to// their own bytes) and integers as native integers (using the native_slot// abstraction).// Note that there is another tradeoff here in keeping string keys as native// strings rather than Ruby strings: traversing the Map requires conversion to// Ruby string values on every traversal, potentially creating more garbage. We// should consider ways to cache a Ruby version of the key if this becomes an// issue later.// Forms a key to use with the underlying strtable from a Ruby key value. |buf|// must point to TABLE_KEY_BUF_LENGTH bytes of temporary space, used to// construct a key byte sequence if needed. |out_key| and |out_length| provide// the resulting key data/length.#define TABLE_KEY_BUF_LENGTH 8  // sizeof(uint64_t)static VALUE table_key(Map* self, VALUE key,                       char* buf,                       const char** out_key,                       size_t* out_length) {  switch (self->key_type) {    case UPB_TYPE_BYTES:    case UPB_TYPE_STRING:      // Strings: use string content directly.      if (TYPE(key) == T_SYMBOL) {        key = rb_id2str(SYM2ID(key));      }      Check_Type(key, T_STRING);      key = native_slot_encode_and_freeze_string(self->key_type, key);      *out_key = RSTRING_PTR(key);      *out_length = RSTRING_LEN(key);      break;    case UPB_TYPE_BOOL:    case UPB_TYPE_INT32:    case UPB_TYPE_INT64:    case UPB_TYPE_UINT32:    case UPB_TYPE_UINT64:      native_slot_set("", self->key_type, Qnil, buf, key);      *out_key = buf;      *out_length = native_slot_size(self->key_type);      break;    default:      // Map constructor should not allow a Map with another key type to be      // constructed.      assert(false);      break;  }  return key;}static VALUE table_key_to_ruby(Map* self, const char* buf, size_t length) {  switch (self->key_type) {    case UPB_TYPE_BYTES:    case UPB_TYPE_STRING: {      VALUE ret = rb_str_new(buf, length);      rb_enc_associate(ret,                       (self->key_type == UPB_TYPE_BYTES) ?                       kRubyString8bitEncoding : kRubyStringUtf8Encoding);      return ret;    }    case UPB_TYPE_BOOL:    case UPB_TYPE_INT32:    case UPB_TYPE_INT64:    case UPB_TYPE_UINT32:    case UPB_TYPE_UINT64:      return native_slot_get(self->key_type, Qnil, buf);    default:      assert(false);      return Qnil;  }}static void* value_memory(upb_value* v) {  return (void*)(&v->val);}// -----------------------------------------------------------------------------// Map container type.// -----------------------------------------------------------------------------const rb_data_type_t Map_type = {  "Google::Protobuf::Map",  { Map_mark, Map_free, NULL },};VALUE cMap;Map* ruby_to_Map(VALUE _self) {  Map* self;  TypedData_Get_Struct(_self, Map, &Map_type, self);  return self;}void Map_mark(void* _self) {  Map* self = _self;  rb_gc_mark(self->value_type_class);  rb_gc_mark(self->parse_frame);  if (self->value_type == UPB_TYPE_STRING ||      self->value_type == UPB_TYPE_BYTES ||      self->value_type == UPB_TYPE_MESSAGE) {    upb_strtable_iter it;    for (upb_strtable_begin(&it, &self->table);         !upb_strtable_done(&it);         upb_strtable_next(&it)) {      upb_value v = upb_strtable_iter_value(&it);      void* mem = value_memory(&v);      native_slot_mark(self->value_type, mem);    }  }}void Map_free(void* _self) {  Map* self = _self;  upb_strtable_uninit(&self->table);  xfree(self);}VALUE Map_alloc(VALUE klass) {  Map* self = ALLOC(Map);  memset(self, 0, sizeof(Map));  self->value_type_class = Qnil;  return TypedData_Wrap_Struct(klass, &Map_type, self);}VALUE Map_set_frame(VALUE map, VALUE val) {  Map* self = ruby_to_Map(map);  self->parse_frame = val;  return val;}static bool needs_typeclass(upb_fieldtype_t type) {  switch (type) {    case UPB_TYPE_MESSAGE:    case UPB_TYPE_ENUM:      return true;    default:      return false;  }}/* * call-seq: *     Map.new(key_type, value_type, value_typeclass = nil, init_hashmap = {}) *     => new map * * Allocates a new Map container. This constructor may be called with 2, 3, or 4 * arguments. The first two arguments are always present and are symbols (taking * on the same values as field-type symbols in message descriptors) that * indicate the type of the map key and value fields. * * The supported key types are: :int32, :int64, :uint32, :uint64, :bool, * :string, :bytes. * * The supported value types are: :int32, :int64, :uint32, :uint64, :bool, * :string, :bytes, :enum, :message. * * The third argument, value_typeclass, must be present if value_type is :enum * or :message. As in RepeatedField#new, this argument must be a message class * (for :message) or enum module (for :enum). * * The last argument, if present, provides initial content for map. Note that * this may be an ordinary Ruby hashmap or another Map instance with identical * key and value types. Also note that this argument may be present whether or * not value_typeclass is present (and it is unambiguously separate from * value_typeclass because value_typeclass's presence is strictly determined by * value_type). The contents of this initial hashmap or Map instance are * shallow-copied into the new Map: the original map is unmodified, but * references to underlying objects will be shared if the value type is a * message type. */VALUE Map_init(int argc, VALUE* argv, VALUE _self) {  Map* self = ruby_to_Map(_self);  int init_value_arg;  // We take either two args (:key_type, :value_type), three args (:key_type,  // :value_type, "ValueMessageType"), or four args (the above plus an initial  // hashmap).  if (argc < 2 || argc > 4) {    rb_raise(rb_eArgError, "Map constructor expects 2, 3 or 4 arguments.");  }  self->key_type = ruby_to_fieldtype(argv[0]);  self->value_type = ruby_to_fieldtype(argv[1]);  self->parse_frame = Qnil;  // Check that the key type is an allowed type.  switch (self->key_type) {    case UPB_TYPE_INT32:    case UPB_TYPE_INT64:    case UPB_TYPE_UINT32:    case UPB_TYPE_UINT64:    case UPB_TYPE_BOOL:    case UPB_TYPE_STRING:    case UPB_TYPE_BYTES:      // These are OK.      break;    default:      rb_raise(rb_eArgError, "Invalid key type for map.");  }  init_value_arg = 2;  if (needs_typeclass(self->value_type) && argc > 2) {    self->value_type_class = argv[2];    validate_type_class(self->value_type, self->value_type_class);    init_value_arg = 3;  }  // Table value type is always UINT64: this ensures enough space to store the  // native_slot value.  if (!upb_strtable_init(&self->table, UPB_CTYPE_UINT64)) {    rb_raise(rb_eRuntimeError, "Could not allocate table.");  }  if (argc > init_value_arg) {    Map_merge_into_self(_self, argv[init_value_arg]);  }  return Qnil;}/* * call-seq: *     Map.each(&block) * * Invokes &block on each |key, value| pair in the map, in unspecified order. * Note that Map also includes Enumerable; map thus acts like a normal Ruby * sequence. */VALUE Map_each(VALUE _self) {  Map* self = ruby_to_Map(_self);  upb_strtable_iter it;  for (upb_strtable_begin(&it, &self->table);       !upb_strtable_done(&it);       upb_strtable_next(&it)) {    VALUE key = table_key_to_ruby(        self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));    upb_value v = upb_strtable_iter_value(&it);    void* mem = value_memory(&v);    VALUE value = native_slot_get(self->value_type,                                  self->value_type_class,                                  mem);    rb_yield_values(2, key, value);  }  return Qnil;}/* * call-seq: *     Map.keys => [list_of_keys] * * Returns the list of keys contained in the map, in unspecified order. */VALUE Map_keys(VALUE _self) {  Map* self = ruby_to_Map(_self);  VALUE ret = rb_ary_new();  upb_strtable_iter it;  for (upb_strtable_begin(&it, &self->table);       !upb_strtable_done(&it);       upb_strtable_next(&it)) {    VALUE key = table_key_to_ruby(        self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));    rb_ary_push(ret, key);  }  return ret;}/* * call-seq: *     Map.values => [list_of_values] * * Returns the list of values contained in the map, in unspecified order. */VALUE Map_values(VALUE _self) {  Map* self = ruby_to_Map(_self);  VALUE ret = rb_ary_new();  upb_strtable_iter it;  for (upb_strtable_begin(&it, &self->table);       !upb_strtable_done(&it);       upb_strtable_next(&it)) {    upb_value v = upb_strtable_iter_value(&it);    void* mem = value_memory(&v);    VALUE value = native_slot_get(self->value_type,                                  self->value_type_class,                                  mem);    rb_ary_push(ret, value);  }  return ret;}/* * call-seq: *     Map.[](key) => value * * Accesses the element at the given key. Throws an exception if the key type is * incorrect. Returns nil when the key is not present in the map. */VALUE Map_index(VALUE _self, VALUE key) {  Map* self = ruby_to_Map(_self);  char keybuf[TABLE_KEY_BUF_LENGTH];  const char* keyval = NULL;  size_t length = 0;  upb_value v;  key = table_key(self, key, keybuf, &keyval, &length);  if (upb_strtable_lookup2(&self->table, keyval, length, &v)) {    void* mem = value_memory(&v);    return native_slot_get(self->value_type, self->value_type_class, mem);  } else {    return Qnil;  }}/* * call-seq: *     Map.[]=(key, value) => value * * Inserts or overwrites the value at the given key with the given new value. * Throws an exception if the key type is incorrect. Returns the new value that * was just inserted. */VALUE Map_index_set(VALUE _self, VALUE key, VALUE value) {  Map* self = ruby_to_Map(_self);  char keybuf[TABLE_KEY_BUF_LENGTH];  const char* keyval = NULL;  size_t length = 0;  upb_value v;  void* mem;  key = table_key(self, key, keybuf, &keyval, &length);  rb_check_frozen(_self);  if (TYPE(value) == T_HASH) {    VALUE args[1] = { value };    value = rb_class_new_instance(1, args, self->value_type_class);  }  mem = value_memory(&v);  native_slot_set("", self->value_type, self->value_type_class, mem, value);  // Replace any existing value by issuing a 'remove' operation first.  upb_strtable_remove2(&self->table, keyval, length, NULL);  if (!upb_strtable_insert2(&self->table, keyval, length, v)) {    rb_raise(rb_eRuntimeError, "Could not insert into table");  }  // Ruby hashmap's :[]= method also returns the inserted value.  return value;}/* * call-seq: *     Map.has_key?(key) => bool * * Returns true if the given key is present in the map. Throws an exception if * the key has the wrong type. */VALUE Map_has_key(VALUE _self, VALUE key) {  Map* self = ruby_to_Map(_self);  char keybuf[TABLE_KEY_BUF_LENGTH];  const char* keyval = NULL;  size_t length = 0;  key = table_key(self, key, keybuf, &keyval, &length);  if (upb_strtable_lookup2(&self->table, keyval, length, NULL)) {    return Qtrue;  } else {    return Qfalse;  }}/* * call-seq: *     Map.delete(key) => old_value * * Deletes the value at the given key, if any, returning either the old value or * nil if none was present. Throws an exception if the key is of the wrong type. */VALUE Map_delete(VALUE _self, VALUE key) {  Map* self = ruby_to_Map(_self);  char keybuf[TABLE_KEY_BUF_LENGTH];  const char* keyval = NULL;  size_t length = 0;  upb_value v;  key = table_key(self, key, keybuf, &keyval, &length);  rb_check_frozen(_self);  if (upb_strtable_remove2(&self->table, keyval, length, &v)) {    void* mem = value_memory(&v);    return native_slot_get(self->value_type, self->value_type_class, mem);  } else {    return Qnil;  }}/* * call-seq: *     Map.clear * * Removes all entries from the map. */VALUE Map_clear(VALUE _self) {  Map* self = ruby_to_Map(_self);  rb_check_frozen(_self);  // Uninit and reinit the table -- this is faster than iterating and doing a  // delete-lookup on each key.  upb_strtable_uninit(&self->table);  if (!upb_strtable_init(&self->table, UPB_CTYPE_INT64)) {    rb_raise(rb_eRuntimeError, "Unable to re-initialize table");  }  return Qnil;}/* * call-seq: *     Map.length * * Returns the number of entries (key-value pairs) in the map. */VALUE Map_length(VALUE _self) {  Map* self = ruby_to_Map(_self);  return ULL2NUM(upb_strtable_count(&self->table));}static VALUE Map_new_this_type(VALUE _self) {  Map* self = ruby_to_Map(_self);  VALUE new_map = Qnil;  VALUE key_type = fieldtype_to_ruby(self->key_type);  VALUE value_type = fieldtype_to_ruby(self->value_type);  if (self->value_type_class != Qnil) {    new_map = rb_funcall(CLASS_OF(_self), rb_intern("new"), 3,                         key_type, value_type, self->value_type_class);  } else {    new_map = rb_funcall(CLASS_OF(_self), rb_intern("new"), 2,                         key_type, value_type);  }  return new_map;}/* * call-seq: *     Map.dup => new_map * * Duplicates this map with a shallow copy. References to all non-primitive * element objects (e.g., submessages) are shared. */VALUE Map_dup(VALUE _self) {  Map* self = ruby_to_Map(_self);  VALUE new_map = Map_new_this_type(_self);  Map* new_self = ruby_to_Map(new_map);  upb_strtable_iter it;  for (upb_strtable_begin(&it, &self->table);       !upb_strtable_done(&it);       upb_strtable_next(&it)) {    upb_value v = upb_strtable_iter_value(&it);    void* mem = value_memory(&v);    upb_value dup;    void* dup_mem = value_memory(&dup);    native_slot_dup(self->value_type, dup_mem, mem);    if (!upb_strtable_insert2(&new_self->table,                              upb_strtable_iter_key(&it),                              upb_strtable_iter_keylength(&it),                              dup)) {      rb_raise(rb_eRuntimeError, "Error inserting value into new table");    }  }  return new_map;}// Used by Google::Protobuf.deep_copy but not exposed directly.VALUE Map_deep_copy(VALUE _self) {  Map* self = ruby_to_Map(_self);  VALUE new_map = Map_new_this_type(_self);  Map* new_self = ruby_to_Map(new_map);  upb_strtable_iter it;  for (upb_strtable_begin(&it, &self->table);       !upb_strtable_done(&it);       upb_strtable_next(&it)) {    upb_value v = upb_strtable_iter_value(&it);    void* mem = value_memory(&v);    upb_value dup;    void* dup_mem = value_memory(&dup);    native_slot_deep_copy(self->value_type, dup_mem, mem);    if (!upb_strtable_insert2(&new_self->table,                              upb_strtable_iter_key(&it),                              upb_strtable_iter_keylength(&it),                              dup)) {      rb_raise(rb_eRuntimeError, "Error inserting value into new table");    }  }  return new_map;}/* * call-seq: *     Map.==(other) => boolean * * Compares this map to another. Maps are equal if they have identical key sets, * and for each key, the values in both maps compare equal. Elements are * compared as per normal Ruby semantics, by calling their :== methods (or * performing a more efficient comparison for primitive types). * * Maps with dissimilar key types or value types/typeclasses are never equal, * even if value comparison (for example, between integers and floats) would * have otherwise indicated that every element has equal value. */VALUE Map_eq(VALUE _self, VALUE _other) {  Map* self = ruby_to_Map(_self);  Map* other;  upb_strtable_iter it;  // Allow comparisons to Ruby hashmaps by converting to a temporary Map  // instance. Slow, but workable.  if (TYPE(_other) == T_HASH) {    VALUE other_map = Map_new_this_type(_self);    Map_merge_into_self(other_map, _other);    _other = other_map;  }  other = ruby_to_Map(_other);  if (self == other) {    return Qtrue;  }  if (self->key_type != other->key_type ||      self->value_type != other->value_type ||      self->value_type_class != other->value_type_class) {    return Qfalse;  }  if (upb_strtable_count(&self->table) != upb_strtable_count(&other->table)) {    return Qfalse;  }  // For each member of self, check that an equal member exists at the same key  // in other.  for (upb_strtable_begin(&it, &self->table);       !upb_strtable_done(&it);       upb_strtable_next(&it)) {    upb_value v = upb_strtable_iter_value(&it);    void* mem = value_memory(&v);    upb_value other_v;    void* other_mem = value_memory(&other_v);    if (!upb_strtable_lookup2(&other->table,                              upb_strtable_iter_key(&it),                              upb_strtable_iter_keylength(&it),                              &other_v)) {      // Not present in other map.      return Qfalse;    }    if (!native_slot_eq(self->value_type, mem, other_mem)) {      // Present, but value not equal.      return Qfalse;    }  }  return Qtrue;}/* * call-seq: *     Map.hash => hash_value * * Returns a hash value based on this map's contents. */VALUE Map_hash(VALUE _self) {  Map* self = ruby_to_Map(_self);  st_index_t h = rb_hash_start(0);  VALUE hash_sym = rb_intern("hash");  upb_strtable_iter it;  for (upb_strtable_begin(&it, &self->table);       !upb_strtable_done(&it);       upb_strtable_next(&it)) {    VALUE key = table_key_to_ruby(        self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));    upb_value v = upb_strtable_iter_value(&it);    void* mem = value_memory(&v);    VALUE value = native_slot_get(self->value_type,                                  self->value_type_class,                                  mem);    h = rb_hash_uint(h, NUM2LONG(rb_funcall(key, hash_sym, 0)));    h = rb_hash_uint(h, NUM2LONG(rb_funcall(value, hash_sym, 0)));  }  return INT2FIX(h);}/* * call-seq: *     Map.to_h => {} * * Returns a Ruby Hash object containing all the values within the map */VALUE Map_to_h(VALUE _self) {  Map* self = ruby_to_Map(_self);  VALUE hash = rb_hash_new();  upb_strtable_iter it;  for (upb_strtable_begin(&it, &self->table);       !upb_strtable_done(&it);       upb_strtable_next(&it)) {    VALUE key = table_key_to_ruby(        self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));    upb_value v = upb_strtable_iter_value(&it);    void* mem = value_memory(&v);    VALUE value = native_slot_get(self->value_type,                                  self->value_type_class,                                  mem);    if (self->value_type == UPB_TYPE_MESSAGE) {      value = Message_to_h(value);    }    rb_hash_aset(hash, key, value);  }  return hash;}/* * call-seq: *     Map.inspect => string * * Returns a string representing this map's elements. It will be formatted as * "{key => value, key => value, ...}", with each key and value string * representation computed by its own #inspect method. */VALUE Map_inspect(VALUE _self) {  Map* self = ruby_to_Map(_self);  VALUE str = rb_str_new2("{");  bool first = true;  VALUE inspect_sym = rb_intern("inspect");  upb_strtable_iter it;  for (upb_strtable_begin(&it, &self->table);       !upb_strtable_done(&it);       upb_strtable_next(&it)) {    VALUE key = table_key_to_ruby(        self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it));    upb_value v = upb_strtable_iter_value(&it);    void* mem = value_memory(&v);    VALUE value = native_slot_get(self->value_type,                                  self->value_type_class,                                  mem);    if (!first) {      str = rb_str_cat2(str, ", ");    } else {      first = false;    }    str = rb_str_append(str, rb_funcall(key, inspect_sym, 0));    str = rb_str_cat2(str, "=>");    str = rb_str_append(str, rb_funcall(value, inspect_sym, 0));  }  str = rb_str_cat2(str, "}");  return str;}/* * call-seq: *     Map.merge(other_map) => map * * Copies key/value pairs from other_map into a copy of this map. If a key is * set in other_map and this map, the value from other_map overwrites the value * in the new copy of this map. Returns the new copy of this map with merged * contents. */VALUE Map_merge(VALUE _self, VALUE hashmap) {  VALUE dupped = Map_dup(_self);  return Map_merge_into_self(dupped, hashmap);}static int merge_into_self_callback(VALUE key, VALUE value, VALUE self) {  Map_index_set(self, key, value);  return ST_CONTINUE;}// Used only internally -- shared by #merge and #initialize.VALUE Map_merge_into_self(VALUE _self, VALUE hashmap) {  if (TYPE(hashmap) == T_HASH) {    rb_hash_foreach(hashmap, merge_into_self_callback, _self);  } else if (RB_TYPE_P(hashmap, T_DATA) && RTYPEDDATA_P(hashmap) &&             RTYPEDDATA_TYPE(hashmap) == &Map_type) {    Map* self = ruby_to_Map(_self);    Map* other = ruby_to_Map(hashmap);    upb_strtable_iter it;    if (self->key_type != other->key_type ||        self->value_type != other->value_type ||        self->value_type_class != other->value_type_class) {      rb_raise(rb_eArgError, "Attempt to merge Map with mismatching types");    }    for (upb_strtable_begin(&it, &other->table);         !upb_strtable_done(&it);         upb_strtable_next(&it)) {      // Replace any existing value by issuing a 'remove' operation first.      upb_value v;      upb_value oldv;      upb_strtable_remove2(&self->table,                           upb_strtable_iter_key(&it),                           upb_strtable_iter_keylength(&it),                           &oldv);      v = upb_strtable_iter_value(&it);      upb_strtable_insert2(&self->table,                           upb_strtable_iter_key(&it),                           upb_strtable_iter_keylength(&it),                           v);    }  } else {    rb_raise(rb_eArgError, "Unknown type merging into Map");  }  return _self;}// Internal method: map iterator initialization (used for serialization).void Map_begin(VALUE _self, Map_iter* iter) {  Map* self = ruby_to_Map(_self);  iter->self = self;  upb_strtable_begin(&iter->it, &self->table);}void Map_next(Map_iter* iter) {  upb_strtable_next(&iter->it);}bool Map_done(Map_iter* iter) {  return upb_strtable_done(&iter->it);}VALUE Map_iter_key(Map_iter* iter) {  return table_key_to_ruby(      iter->self,      upb_strtable_iter_key(&iter->it),      upb_strtable_iter_keylength(&iter->it));}VALUE Map_iter_value(Map_iter* iter) {  upb_value v = upb_strtable_iter_value(&iter->it);  void* mem = value_memory(&v);  return native_slot_get(iter->self->value_type,                         iter->self->value_type_class,                         mem);}void Map_register(VALUE module) {  VALUE klass = rb_define_class_under(module, "Map", rb_cObject);  rb_define_alloc_func(klass, Map_alloc);  rb_gc_register_address(&cMap);  cMap = klass;  rb_define_method(klass, "initialize", Map_init, -1);  rb_define_method(klass, "each", Map_each, 0);  rb_define_method(klass, "keys", Map_keys, 0);  rb_define_method(klass, "values", Map_values, 0);  rb_define_method(klass, "[]", Map_index, 1);  rb_define_method(klass, "[]=", Map_index_set, 2);  rb_define_method(klass, "has_key?", Map_has_key, 1);  rb_define_method(klass, "delete", Map_delete, 1);  rb_define_method(klass, "clear", Map_clear, 0);  rb_define_method(klass, "length", Map_length, 0);  rb_define_method(klass, "dup", Map_dup, 0);  rb_define_method(klass, "==", Map_eq, 1);  rb_define_method(klass, "hash", Map_hash, 0);  rb_define_method(klass, "to_h", Map_to_h, 0);  rb_define_method(klass, "inspect", Map_inspect, 0);  rb_define_method(klass, "merge", Map_merge, 1);  rb_include_module(klass, rb_mEnumerable);}
 |