encode_decode.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545
  1. // Protocol Buffers - Google's data interchange format
  2. // Copyright 2014 Google Inc. All rights reserved.
  3. // https://developers.google.com/protocol-buffers/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are
  7. // met:
  8. //
  9. // * Redistributions of source code must retain the above copyright
  10. // notice, this list of conditions and the following disclaimer.
  11. // * Redistributions in binary form must reproduce the above
  12. // copyright notice, this list of conditions and the following disclaimer
  13. // in the documentation and/or other materials provided with the
  14. // distribution.
  15. // * Neither the name of Google Inc. nor the names of its
  16. // contributors may be used to endorse or promote products derived from
  17. // this software without specific prior written permission.
  18. //
  19. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  20. // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  21. // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  22. // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  23. // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  24. // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  25. // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  26. // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  27. // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  28. // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  29. // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30. #include "protobuf.h"
  31. // This function is equivalent to rb_str_cat(), but unlike the real
  32. // rb_str_cat(), it doesn't leak memory in some versions of Ruby.
  33. // For more information, see:
  34. // https://bugs.ruby-lang.org/issues/11328
  35. VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) {
  36. char *p;
  37. size_t oldlen = RSTRING_LEN(rb_str);
  38. rb_str_modify_expand(rb_str, len);
  39. p = RSTRING_PTR(rb_str);
  40. memcpy(p + oldlen, str, len);
  41. rb_str_set_len(rb_str, oldlen + len);
  42. return rb_str;
  43. }
  44. // The code below also comes from upb's prototype Ruby binding, developed by
  45. // haberman@.
  46. /* stringsink *****************************************************************/
  47. static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {
  48. stringsink *sink = _sink;
  49. sink->len = 0;
  50. return sink;
  51. }
  52. static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,
  53. size_t len, const upb_bufhandle *handle) {
  54. stringsink *sink = _sink;
  55. size_t new_size = sink->size;
  56. UPB_UNUSED(hd);
  57. UPB_UNUSED(handle);
  58. while (sink->len + len > new_size) {
  59. new_size *= 2;
  60. }
  61. if (new_size != sink->size) {
  62. sink->ptr = realloc(sink->ptr, new_size);
  63. sink->size = new_size;
  64. }
  65. memcpy(sink->ptr + sink->len, ptr, len);
  66. sink->len += len;
  67. return len;
  68. }
  69. void stringsink_init(stringsink *sink) {
  70. upb_byteshandler_init(&sink->handler);
  71. upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);
  72. upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);
  73. upb_bytessink_reset(&sink->sink, &sink->handler, sink);
  74. sink->size = 32;
  75. sink->ptr = malloc(sink->size);
  76. sink->len = 0;
  77. }
  78. void stringsink_uninit(stringsink *sink) {
  79. free(sink->ptr);
  80. }
  81. // -----------------------------------------------------------------------------
  82. // Parsing.
  83. // -----------------------------------------------------------------------------
  84. #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs)
  85. typedef struct {
  86. size_t ofs;
  87. int32_t hasbit;
  88. } field_handlerdata_t;
  89. // Creates a handlerdata that contains the offset and the hasbit for the field
  90. static const void* newhandlerdata(upb_handlers* h, uint32_t ofs, int32_t hasbit) {
  91. field_handlerdata_t *hd = ALLOC(field_handlerdata_t);
  92. hd->ofs = ofs;
  93. hd->hasbit = hasbit;
  94. upb_handlers_addcleanup(h, hd, xfree);
  95. return hd;
  96. }
  97. typedef struct {
  98. size_t ofs;
  99. int32_t hasbit;
  100. VALUE subklass;
  101. } submsg_handlerdata_t;
  102. // Creates a handlerdata that contains offset and submessage type information.
  103. static const void *newsubmsghandlerdata(upb_handlers* h,
  104. uint32_t ofs,
  105. int32_t hasbit,
  106. VALUE subklass) {
  107. submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t);
  108. hd->ofs = ofs;
  109. hd->hasbit = hasbit;
  110. hd->subklass = subklass;
  111. upb_handlers_addcleanup(h, hd, xfree);
  112. return hd;
  113. }
  114. typedef struct {
  115. size_t ofs; // union data slot
  116. size_t case_ofs; // oneof_case field
  117. uint32_t oneof_case_num; // oneof-case number to place in oneof_case field
  118. VALUE subklass;
  119. } oneof_handlerdata_t;
  120. static const void *newoneofhandlerdata(upb_handlers *h,
  121. uint32_t ofs,
  122. uint32_t case_ofs,
  123. const upb_fielddef *f,
  124. const Descriptor* desc) {
  125. oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t);
  126. hd->ofs = ofs;
  127. hd->case_ofs = case_ofs;
  128. // We reuse the field tag number as a oneof union discriminant tag. Note that
  129. // we don't expose these numbers to the user, so the only requirement is that
  130. // we have some unique ID for each union case/possibility. The field tag
  131. // numbers are already present and are easy to use so there's no reason to
  132. // create a separate ID space. In addition, using the field tag number here
  133. // lets us easily look up the field in the oneof accessor.
  134. hd->oneof_case_num = upb_fielddef_number(f);
  135. hd->subklass = field_type_class(desc->layout, f);
  136. upb_handlers_addcleanup(h, hd, xfree);
  137. return hd;
  138. }
  139. // A handler that starts a repeated field. Gets the Repeated*Field instance for
  140. // this field (such an instance always exists even in an empty message).
  141. static void *startseq_handler(void* closure, const void* hd) {
  142. MessageHeader* msg = closure;
  143. const size_t *ofs = hd;
  144. return (void*)DEREF(msg, *ofs, VALUE);
  145. }
  146. // Handlers that append primitive values to a repeated field.
  147. #define DEFINE_APPEND_HANDLER(type, ctype) \
  148. static bool append##type##_handler(void *closure, const void *hd, \
  149. ctype val) { \
  150. VALUE ary = (VALUE)closure; \
  151. RepeatedField_push_native(ary, &val); \
  152. return true; \
  153. }
  154. DEFINE_APPEND_HANDLER(bool, bool)
  155. DEFINE_APPEND_HANDLER(int32, int32_t)
  156. DEFINE_APPEND_HANDLER(uint32, uint32_t)
  157. DEFINE_APPEND_HANDLER(float, float)
  158. DEFINE_APPEND_HANDLER(int64, int64_t)
  159. DEFINE_APPEND_HANDLER(uint64, uint64_t)
  160. DEFINE_APPEND_HANDLER(double, double)
  161. // Appends a string to a repeated field.
  162. static void* appendstr_handler(void *closure,
  163. const void *hd,
  164. size_t size_hint) {
  165. VALUE ary = (VALUE)closure;
  166. VALUE str = rb_str_new2("");
  167. rb_enc_associate(str, kRubyStringUtf8Encoding);
  168. RepeatedField_push_native(ary, &str);
  169. return (void*)str;
  170. }
  171. static void set_hasbit(void *closure, int32_t hasbit) {
  172. if (hasbit > 0) {
  173. uint8_t* storage = closure;
  174. storage[hasbit/8] |= 1 << (hasbit % 8);
  175. }
  176. }
  177. // Appends a 'bytes' string to a repeated field.
  178. static void* appendbytes_handler(void *closure,
  179. const void *hd,
  180. size_t size_hint) {
  181. VALUE ary = (VALUE)closure;
  182. VALUE str = rb_str_new2("");
  183. rb_enc_associate(str, kRubyString8bitEncoding);
  184. RepeatedField_push_native(ary, &str);
  185. return (void*)str;
  186. }
  187. // Sets a non-repeated string field in a message.
  188. static void* str_handler(void *closure,
  189. const void *hd,
  190. size_t size_hint) {
  191. MessageHeader* msg = closure;
  192. const field_handlerdata_t *fieldhandler = hd;
  193. VALUE str = rb_str_new2("");
  194. rb_enc_associate(str, kRubyStringUtf8Encoding);
  195. DEREF(msg, fieldhandler->ofs, VALUE) = str;
  196. set_hasbit(closure, fieldhandler->hasbit);
  197. return (void*)str;
  198. }
  199. // Sets a non-repeated 'bytes' field in a message.
  200. static void* bytes_handler(void *closure,
  201. const void *hd,
  202. size_t size_hint) {
  203. MessageHeader* msg = closure;
  204. const field_handlerdata_t *fieldhandler = hd;
  205. VALUE str = rb_str_new2("");
  206. rb_enc_associate(str, kRubyString8bitEncoding);
  207. DEREF(msg, fieldhandler->ofs, VALUE) = str;
  208. set_hasbit(closure, fieldhandler->hasbit);
  209. return (void*)str;
  210. }
  211. static size_t stringdata_handler(void* closure, const void* hd,
  212. const char* str, size_t len,
  213. const upb_bufhandle* handle) {
  214. VALUE rb_str = (VALUE)closure;
  215. noleak_rb_str_cat(rb_str, str, len);
  216. return len;
  217. }
  218. static bool stringdata_end_handler(void* closure, const void* hd) {
  219. VALUE rb_str = (VALUE)closure;
  220. rb_obj_freeze(rb_str);
  221. return true;
  222. }
  223. static bool appendstring_end_handler(void* closure, const void* hd) {
  224. VALUE rb_str = (VALUE)closure;
  225. rb_obj_freeze(rb_str);
  226. return true;
  227. }
  228. // Appends a submessage to a repeated field (a regular Ruby array for now).
  229. static void *appendsubmsg_handler(void *closure, const void *hd) {
  230. VALUE ary = (VALUE)closure;
  231. const submsg_handlerdata_t *submsgdata = hd;
  232. MessageHeader* submsg;
  233. VALUE submsg_rb = rb_class_new_instance(0, NULL, submsgdata->subklass);
  234. RepeatedField_push(ary, submsg_rb);
  235. TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
  236. return submsg;
  237. }
  238. // Sets a non-repeated submessage field in a message.
  239. static void *submsg_handler(void *closure, const void *hd) {
  240. MessageHeader* msg = closure;
  241. const submsg_handlerdata_t* submsgdata = hd;
  242. VALUE submsg_rb;
  243. MessageHeader* submsg;
  244. if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) {
  245. DEREF(msg, submsgdata->ofs, VALUE) =
  246. rb_class_new_instance(0, NULL, submsgdata->subklass);
  247. }
  248. set_hasbit(closure, submsgdata->hasbit);
  249. submsg_rb = DEREF(msg, submsgdata->ofs, VALUE);
  250. TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
  251. return submsg;
  252. }
  253. // Handler data for startmap/endmap handlers.
  254. typedef struct {
  255. size_t ofs;
  256. upb_fieldtype_t key_field_type;
  257. upb_fieldtype_t value_field_type;
  258. VALUE subklass;
  259. } map_handlerdata_t;
  260. // Temporary frame for map parsing: at the beginning of a map entry message, a
  261. // submsg handler allocates a frame to hold (i) a reference to the Map object
  262. // into which this message will be inserted and (ii) storage slots to
  263. // temporarily hold the key and value for this map entry until the end of the
  264. // submessage. When the submessage ends, another handler is called to insert the
  265. // value into the map.
  266. typedef struct {
  267. VALUE map;
  268. const map_handlerdata_t* handlerdata;
  269. char key_storage[NATIVE_SLOT_MAX_SIZE];
  270. char value_storage[NATIVE_SLOT_MAX_SIZE];
  271. } map_parse_frame_t;
  272. static void MapParseFrame_mark(void* _self) {
  273. map_parse_frame_t* frame = _self;
  274. // This shouldn't strictly be necessary since this should be rooted by the
  275. // message itself, but it can't hurt.
  276. rb_gc_mark(frame->map);
  277. native_slot_mark(frame->handlerdata->key_field_type, &frame->key_storage);
  278. native_slot_mark(frame->handlerdata->value_field_type, &frame->value_storage);
  279. }
  280. void MapParseFrame_free(void* self) {
  281. xfree(self);
  282. }
  283. rb_data_type_t MapParseFrame_type = {
  284. "MapParseFrame",
  285. { MapParseFrame_mark, MapParseFrame_free, NULL },
  286. };
  287. static map_parse_frame_t* map_push_frame(VALUE map,
  288. const map_handlerdata_t* handlerdata) {
  289. map_parse_frame_t* frame = ALLOC(map_parse_frame_t);
  290. frame->handlerdata = handlerdata;
  291. frame->map = map;
  292. native_slot_init(handlerdata->key_field_type, &frame->key_storage);
  293. native_slot_init(handlerdata->value_field_type, &frame->value_storage);
  294. Map_set_frame(map,
  295. TypedData_Wrap_Struct(rb_cObject, &MapParseFrame_type, frame));
  296. return frame;
  297. }
  298. // Handler to begin a map entry: allocates a temporary frame. This is the
  299. // 'startsubmsg' handler on the msgdef that contains the map field.
  300. static void *startmapentry_handler(void *closure, const void *hd) {
  301. MessageHeader* msg = closure;
  302. const map_handlerdata_t* mapdata = hd;
  303. VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE);
  304. return map_push_frame(map_rb, mapdata);
  305. }
  306. // Handler to end a map entry: inserts the value defined during the message into
  307. // the map. This is the 'endmsg' handler on the map entry msgdef.
  308. static bool endmap_handler(void *closure, const void *hd, upb_status* s) {
  309. map_parse_frame_t* frame = closure;
  310. const map_handlerdata_t* mapdata = hd;
  311. VALUE key = native_slot_get(
  312. mapdata->key_field_type, Qnil,
  313. &frame->key_storage);
  314. VALUE value = native_slot_get(
  315. mapdata->value_field_type, mapdata->subklass,
  316. &frame->value_storage);
  317. Map_index_set(frame->map, key, value);
  318. Map_set_frame(frame->map, Qnil);
  319. return true;
  320. }
  321. // Allocates a new map_handlerdata_t given the map entry message definition. If
  322. // the offset of the field within the parent message is also given, that is
  323. // added to the handler data as well. Note that this is called *twice* per map
  324. // field: once in the parent message handler setup when setting the startsubmsg
  325. // handler and once in the map entry message handler setup when setting the
  326. // key/value and endmsg handlers. The reason is that there is no easy way to
  327. // pass the handlerdata down to the sub-message handler setup.
  328. static map_handlerdata_t* new_map_handlerdata(
  329. size_t ofs,
  330. const upb_msgdef* mapentry_def,
  331. const Descriptor* desc) {
  332. const upb_fielddef* key_field;
  333. const upb_fielddef* value_field;
  334. map_handlerdata_t* hd = ALLOC(map_handlerdata_t);
  335. hd->ofs = ofs;
  336. key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD);
  337. assert(key_field != NULL);
  338. hd->key_field_type = upb_fielddef_type(key_field);
  339. value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD);
  340. assert(value_field != NULL);
  341. hd->value_field_type = upb_fielddef_type(value_field);
  342. hd->subklass = field_type_class(desc->layout, value_field);
  343. return hd;
  344. }
  345. // Handlers that set primitive values in oneofs.
  346. #define DEFINE_ONEOF_HANDLER(type, ctype) \
  347. static bool oneof##type##_handler(void *closure, const void *hd, \
  348. ctype val) { \
  349. const oneof_handlerdata_t *oneofdata = hd; \
  350. DEREF(closure, oneofdata->case_ofs, uint32_t) = \
  351. oneofdata->oneof_case_num; \
  352. DEREF(closure, oneofdata->ofs, ctype) = val; \
  353. return true; \
  354. }
  355. DEFINE_ONEOF_HANDLER(bool, bool)
  356. DEFINE_ONEOF_HANDLER(int32, int32_t)
  357. DEFINE_ONEOF_HANDLER(uint32, uint32_t)
  358. DEFINE_ONEOF_HANDLER(float, float)
  359. DEFINE_ONEOF_HANDLER(int64, int64_t)
  360. DEFINE_ONEOF_HANDLER(uint64, uint64_t)
  361. DEFINE_ONEOF_HANDLER(double, double)
  362. #undef DEFINE_ONEOF_HANDLER
  363. // Handlers for strings in a oneof.
  364. static void *oneofstr_handler(void *closure,
  365. const void *hd,
  366. size_t size_hint) {
  367. MessageHeader* msg = closure;
  368. const oneof_handlerdata_t *oneofdata = hd;
  369. VALUE str = rb_str_new2("");
  370. rb_enc_associate(str, kRubyStringUtf8Encoding);
  371. DEREF(msg, oneofdata->case_ofs, uint32_t) =
  372. oneofdata->oneof_case_num;
  373. DEREF(msg, oneofdata->ofs, VALUE) = str;
  374. return (void*)str;
  375. }
  376. static void *oneofbytes_handler(void *closure,
  377. const void *hd,
  378. size_t size_hint) {
  379. MessageHeader* msg = closure;
  380. const oneof_handlerdata_t *oneofdata = hd;
  381. VALUE str = rb_str_new2("");
  382. rb_enc_associate(str, kRubyString8bitEncoding);
  383. DEREF(msg, oneofdata->case_ofs, uint32_t) =
  384. oneofdata->oneof_case_num;
  385. DEREF(msg, oneofdata->ofs, VALUE) = str;
  386. return (void*)str;
  387. }
  388. static bool oneofstring_end_handler(void* closure, const void* hd) {
  389. VALUE rb_str = rb_str_new2("");
  390. rb_obj_freeze(rb_str);
  391. return true;
  392. }
  393. // Handler for a submessage field in a oneof.
  394. static void *oneofsubmsg_handler(void *closure,
  395. const void *hd) {
  396. MessageHeader* msg = closure;
  397. const oneof_handlerdata_t *oneofdata = hd;
  398. uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t);
  399. VALUE submsg_rb;
  400. MessageHeader* submsg;
  401. if (oldcase != oneofdata->oneof_case_num ||
  402. DEREF(msg, oneofdata->ofs, VALUE) == Qnil) {
  403. DEREF(msg, oneofdata->ofs, VALUE) =
  404. rb_class_new_instance(0, NULL, oneofdata->subklass);
  405. }
  406. // Set the oneof case *after* allocating the new class instance -- otherwise,
  407. // if the Ruby GC is invoked as part of a call into the VM, it might invoke
  408. // our mark routines, and our mark routines might see the case value
  409. // indicating a VALUE is present and expect a valid VALUE. See comment in
  410. // layout_set() for more detail: basically, the change to the value and the
  411. // case must be atomic w.r.t. the Ruby VM.
  412. DEREF(msg, oneofdata->case_ofs, uint32_t) =
  413. oneofdata->oneof_case_num;
  414. submsg_rb = DEREF(msg, oneofdata->ofs, VALUE);
  415. TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
  416. return submsg;
  417. }
  418. // Set up handlers for a repeated field.
  419. static void add_handlers_for_repeated_field(upb_handlers *h,
  420. const Descriptor* desc,
  421. const upb_fielddef *f,
  422. size_t offset) {
  423. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  424. attr.handler_data = newhandlerdata(h, offset, -1);
  425. upb_handlers_setstartseq(h, f, startseq_handler, &attr);
  426. switch (upb_fielddef_type(f)) {
  427. #define SET_HANDLER(utype, ltype) \
  428. case utype: \
  429. upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \
  430. break;
  431. SET_HANDLER(UPB_TYPE_BOOL, bool);
  432. SET_HANDLER(UPB_TYPE_INT32, int32);
  433. SET_HANDLER(UPB_TYPE_UINT32, uint32);
  434. SET_HANDLER(UPB_TYPE_ENUM, int32);
  435. SET_HANDLER(UPB_TYPE_FLOAT, float);
  436. SET_HANDLER(UPB_TYPE_INT64, int64);
  437. SET_HANDLER(UPB_TYPE_UINT64, uint64);
  438. SET_HANDLER(UPB_TYPE_DOUBLE, double);
  439. #undef SET_HANDLER
  440. case UPB_TYPE_STRING:
  441. case UPB_TYPE_BYTES: {
  442. bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
  443. upb_handlers_setstartstr(h, f, is_bytes ?
  444. appendbytes_handler : appendstr_handler,
  445. NULL);
  446. upb_handlers_setstring(h, f, stringdata_handler, NULL);
  447. upb_handlers_setendstr(h, f, appendstring_end_handler, NULL);
  448. break;
  449. }
  450. case UPB_TYPE_MESSAGE: {
  451. VALUE subklass = field_type_class(desc->layout, f);
  452. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  453. attr.handler_data = newsubmsghandlerdata(h, 0, -1, subklass);
  454. upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr);
  455. break;
  456. }
  457. }
  458. }
  459. // Set up handlers for a singular field.
  460. static void add_handlers_for_singular_field(const Descriptor* desc,
  461. upb_handlers* h,
  462. const upb_fielddef* f,
  463. size_t offset, size_t hasbit_off) {
  464. // The offset we pass to UPB points to the start of the Message,
  465. // rather than the start of where our data is stored.
  466. int32_t hasbit = -1;
  467. if (hasbit_off != MESSAGE_FIELD_NO_HASBIT) {
  468. hasbit = hasbit_off + sizeof(MessageHeader) * 8;
  469. }
  470. switch (upb_fielddef_type(f)) {
  471. case UPB_TYPE_BOOL:
  472. case UPB_TYPE_INT32:
  473. case UPB_TYPE_UINT32:
  474. case UPB_TYPE_ENUM:
  475. case UPB_TYPE_FLOAT:
  476. case UPB_TYPE_INT64:
  477. case UPB_TYPE_UINT64:
  478. case UPB_TYPE_DOUBLE:
  479. upb_msg_setscalarhandler(h, f, offset, hasbit);
  480. break;
  481. case UPB_TYPE_STRING:
  482. case UPB_TYPE_BYTES: {
  483. bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
  484. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  485. attr.handler_data = newhandlerdata(h, offset, hasbit);
  486. upb_handlers_setstartstr(h, f,
  487. is_bytes ? bytes_handler : str_handler,
  488. &attr);
  489. upb_handlers_setstring(h, f, stringdata_handler, &attr);
  490. upb_handlers_setendstr(h, f, stringdata_end_handler, &attr);
  491. break;
  492. }
  493. case UPB_TYPE_MESSAGE: {
  494. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  495. attr.handler_data = newsubmsghandlerdata(
  496. h, offset, hasbit, field_type_class(desc->layout, f));
  497. upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr);
  498. break;
  499. }
  500. }
  501. }
  502. // Adds handlers to a map field.
  503. static void add_handlers_for_mapfield(upb_handlers* h,
  504. const upb_fielddef* fielddef,
  505. size_t offset,
  506. const Descriptor* desc) {
  507. const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef);
  508. map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc);
  509. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  510. upb_handlers_addcleanup(h, hd, xfree);
  511. attr.handler_data = hd;
  512. upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr);
  513. }
  514. // Adds handlers to a map-entry msgdef.
  515. static void add_handlers_for_mapentry(const upb_msgdef* msgdef, upb_handlers* h,
  516. const Descriptor* desc) {
  517. const upb_fielddef* key_field = map_entry_key(msgdef);
  518. const upb_fielddef* value_field = map_entry_value(msgdef);
  519. map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc);
  520. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  521. upb_handlers_addcleanup(h, hd, xfree);
  522. attr.handler_data = hd;
  523. upb_handlers_setendmsg(h, endmap_handler, &attr);
  524. add_handlers_for_singular_field(
  525. desc, h, key_field,
  526. offsetof(map_parse_frame_t, key_storage),
  527. MESSAGE_FIELD_NO_HASBIT);
  528. add_handlers_for_singular_field(
  529. desc, h, value_field,
  530. offsetof(map_parse_frame_t, value_storage),
  531. MESSAGE_FIELD_NO_HASBIT);
  532. }
  533. // Set up handlers for a oneof field.
  534. static void add_handlers_for_oneof_field(upb_handlers *h,
  535. const upb_fielddef *f,
  536. size_t offset,
  537. size_t oneof_case_offset,
  538. const Descriptor* desc) {
  539. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  540. attr.handler_data =
  541. newoneofhandlerdata(h, offset, oneof_case_offset, f, desc);
  542. switch (upb_fielddef_type(f)) {
  543. #define SET_HANDLER(utype, ltype) \
  544. case utype: \
  545. upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \
  546. break;
  547. SET_HANDLER(UPB_TYPE_BOOL, bool);
  548. SET_HANDLER(UPB_TYPE_INT32, int32);
  549. SET_HANDLER(UPB_TYPE_UINT32, uint32);
  550. SET_HANDLER(UPB_TYPE_ENUM, int32);
  551. SET_HANDLER(UPB_TYPE_FLOAT, float);
  552. SET_HANDLER(UPB_TYPE_INT64, int64);
  553. SET_HANDLER(UPB_TYPE_UINT64, uint64);
  554. SET_HANDLER(UPB_TYPE_DOUBLE, double);
  555. #undef SET_HANDLER
  556. case UPB_TYPE_STRING:
  557. case UPB_TYPE_BYTES: {
  558. bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
  559. upb_handlers_setstartstr(h, f, is_bytes ?
  560. oneofbytes_handler : oneofstr_handler,
  561. &attr);
  562. upb_handlers_setstring(h, f, stringdata_handler, NULL);
  563. upb_handlers_setendstr(h, f, oneofstring_end_handler, &attr);
  564. break;
  565. }
  566. case UPB_TYPE_MESSAGE: {
  567. upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr);
  568. break;
  569. }
  570. }
  571. }
  572. static bool unknown_field_handler(void* closure, const void* hd,
  573. const char* buf, size_t size) {
  574. MessageHeader* msg = (MessageHeader*)closure;
  575. UPB_UNUSED(hd);
  576. if (msg->unknown_fields == NULL) {
  577. msg->unknown_fields = malloc(sizeof(stringsink));
  578. stringsink_init(msg->unknown_fields);
  579. }
  580. stringsink_string(msg->unknown_fields, NULL, buf, size, NULL);
  581. return true;
  582. }
  583. void add_handlers_for_message(const void *closure, upb_handlers *h) {
  584. const VALUE descriptor_pool = (VALUE)closure;
  585. const upb_msgdef* msgdef = upb_handlers_msgdef(h);
  586. Descriptor* desc =
  587. ruby_to_Descriptor(get_msgdef_obj(descriptor_pool, msgdef));
  588. upb_msg_field_iter i;
  589. upb_handlerattr attr = UPB_HANDLERATTR_INIT;
  590. // Ensure layout exists. We may be invoked to create handlers for a given
  591. // message if we are included as a submsg of another message type before our
  592. // class is actually built, so to work around this, we just create the layout
  593. // (and handlers, in the class-building function) on-demand.
  594. if (desc->layout == NULL) {
  595. desc->layout = create_layout(desc);
  596. }
  597. // If this is a mapentry message type, set up a special set of handlers and
  598. // bail out of the normal (user-defined) message type handling.
  599. if (upb_msgdef_mapentry(msgdef)) {
  600. add_handlers_for_mapentry(msgdef, h, desc);
  601. return;
  602. }
  603. upb_handlers_setunknown(h, unknown_field_handler, &attr);
  604. for (upb_msg_field_begin(&i, desc->msgdef);
  605. !upb_msg_field_done(&i);
  606. upb_msg_field_next(&i)) {
  607. const upb_fielddef *f = upb_msg_iter_field(&i);
  608. const upb_oneofdef *oneof = upb_fielddef_containingoneof(f);
  609. size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset +
  610. sizeof(MessageHeader);
  611. if (oneof) {
  612. size_t oneof_case_offset =
  613. desc->layout->oneofs[upb_oneofdef_index(oneof)].case_offset +
  614. sizeof(MessageHeader);
  615. add_handlers_for_oneof_field(h, f, offset, oneof_case_offset, desc);
  616. } else if (is_map_field(f)) {
  617. add_handlers_for_mapfield(h, f, offset, desc);
  618. } else if (upb_fielddef_isseq(f)) {
  619. add_handlers_for_repeated_field(h, desc, f, offset);
  620. } else {
  621. add_handlers_for_singular_field(
  622. desc, h, f, offset,
  623. desc->layout->fields[upb_fielddef_index(f)].hasbit);
  624. }
  625. }
  626. }
  627. // Constructs the handlers for filling a message's data into an in-memory
  628. // object.
  629. const upb_handlers* get_fill_handlers(Descriptor* desc) {
  630. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  631. return upb_handlercache_get(pool->fill_handler_cache, desc->msgdef);
  632. }
  633. static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) {
  634. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  635. return upb_pbcodecache_get(pool->fill_method_cache, desc->msgdef);
  636. }
  637. static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) {
  638. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  639. return upb_json_codecache_get(pool->json_fill_method_cache, desc->msgdef);
  640. }
  641. static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) {
  642. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  643. return upb_handlercache_get(pool->pb_serialize_handler_cache, desc->msgdef);
  644. }
  645. static const upb_handlers* msgdef_json_serialize_handlers(
  646. Descriptor* desc, bool preserve_proto_fieldnames) {
  647. DescriptorPool* pool = ruby_to_DescriptorPool(desc->descriptor_pool);
  648. if (preserve_proto_fieldnames) {
  649. return upb_handlercache_get(pool->json_serialize_handler_preserve_cache,
  650. desc->msgdef);
  651. } else {
  652. return upb_handlercache_get(pool->json_serialize_handler_cache,
  653. desc->msgdef);
  654. }
  655. }
  656. // Stack-allocated context during an encode/decode operation. Contains the upb
  657. // environment and its stack-based allocator, an initial buffer for allocations
  658. // to avoid malloc() when possible, and a template for Ruby exception messages
  659. // if any error occurs.
  660. #define STACK_ENV_STACKBYTES 4096
  661. typedef struct {
  662. upb_arena *arena;
  663. upb_status status;
  664. const char* ruby_error_template;
  665. char allocbuf[STACK_ENV_STACKBYTES];
  666. } stackenv;
  667. static void stackenv_init(stackenv* se, const char* errmsg);
  668. static void stackenv_uninit(stackenv* se);
  669. static void stackenv_init(stackenv* se, const char* errmsg) {
  670. se->ruby_error_template = errmsg;
  671. se->arena =
  672. upb_arena_init(se->allocbuf, sizeof(se->allocbuf), &upb_alloc_global);
  673. upb_status_clear(&se->status);
  674. }
  675. static void stackenv_uninit(stackenv* se) {
  676. upb_arena_free(se->arena);
  677. if (!upb_ok(&se->status)) {
  678. // TODO(haberman): have a way to verify that this is actually a parse error,
  679. // instead of just throwing "parse error" unconditionally.
  680. VALUE errmsg = rb_str_new2(upb_status_errmsg(&se->status));
  681. rb_raise(cParseError, se->ruby_error_template, errmsg);
  682. }
  683. }
  684. /*
  685. * call-seq:
  686. * MessageClass.decode(data) => message
  687. *
  688. * Decodes the given data (as a string containing bytes in protocol buffers wire
  689. * format) under the interpretration given by this message class's definition
  690. * and returns a message object with the corresponding field values.
  691. */
  692. VALUE Message_decode(VALUE klass, VALUE data) {
  693. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  694. Descriptor* desc = ruby_to_Descriptor(descriptor);
  695. VALUE msgklass = Descriptor_msgclass(descriptor);
  696. VALUE msg_rb;
  697. MessageHeader* msg;
  698. if (TYPE(data) != T_STRING) {
  699. rb_raise(rb_eArgError, "Expected string for binary protobuf data.");
  700. }
  701. msg_rb = rb_class_new_instance(0, NULL, msgklass);
  702. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  703. {
  704. const upb_pbdecodermethod* method = msgdef_decodermethod(desc);
  705. const upb_handlers* h = upb_pbdecodermethod_desthandlers(method);
  706. stackenv se;
  707. upb_sink sink;
  708. upb_pbdecoder* decoder;
  709. stackenv_init(&se, "Error occurred during parsing: %" PRIsVALUE);
  710. upb_sink_reset(&sink, h, msg);
  711. decoder = upb_pbdecoder_create(se.arena, method, sink, &se.status);
  712. upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
  713. upb_pbdecoder_input(decoder));
  714. stackenv_uninit(&se);
  715. }
  716. return msg_rb;
  717. }
  718. /*
  719. * call-seq:
  720. * MessageClass.decode_json(data, options = {}) => message
  721. *
  722. * Decodes the given data (as a string containing bytes in protocol buffers wire
  723. * format) under the interpretration given by this message class's definition
  724. * and returns a message object with the corresponding field values.
  725. *
  726. * @param options [Hash] options for the decoder
  727. * ignore_unknown_fields: set true to ignore unknown fields (default is to
  728. * raise an error)
  729. */
  730. VALUE Message_decode_json(int argc, VALUE* argv, VALUE klass) {
  731. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  732. Descriptor* desc = ruby_to_Descriptor(descriptor);
  733. VALUE msgklass = Descriptor_msgclass(descriptor);
  734. VALUE msg_rb;
  735. VALUE data = argv[0];
  736. VALUE ignore_unknown_fields = Qfalse;
  737. MessageHeader* msg;
  738. if (argc < 1 || argc > 2) {
  739. rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
  740. }
  741. if (argc == 2) {
  742. VALUE hash_args = argv[1];
  743. if (TYPE(hash_args) != T_HASH) {
  744. rb_raise(rb_eArgError, "Expected hash arguments.");
  745. }
  746. ignore_unknown_fields = rb_hash_lookup2(
  747. hash_args, ID2SYM(rb_intern("ignore_unknown_fields")), Qfalse);
  748. }
  749. if (TYPE(data) != T_STRING) {
  750. rb_raise(rb_eArgError, "Expected string for JSON data.");
  751. }
  752. // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to
  753. // convert, because string handlers pass data directly to message string
  754. // fields.
  755. msg_rb = rb_class_new_instance(0, NULL, msgklass);
  756. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  757. {
  758. const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc);
  759. stackenv se;
  760. upb_sink sink;
  761. upb_json_parser* parser;
  762. DescriptorPool* pool = ruby_to_DescriptorPool(generated_pool);
  763. stackenv_init(&se, "Error occurred during parsing: %" PRIsVALUE);
  764. upb_sink_reset(&sink, get_fill_handlers(desc), msg);
  765. parser = upb_json_parser_create(se.arena, method, pool->symtab, sink,
  766. &se.status, RTEST(ignore_unknown_fields));
  767. upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
  768. upb_json_parser_input(parser));
  769. stackenv_uninit(&se);
  770. }
  771. return msg_rb;
  772. }
  773. // -----------------------------------------------------------------------------
  774. // Serializing.
  775. // -----------------------------------------------------------------------------
  776. /* msgvisitor *****************************************************************/
  777. static void putmsg(VALUE msg, const Descriptor* desc, upb_sink sink, int depth,
  778. bool emit_defaults, bool is_json, bool open_msg);
  779. static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
  780. upb_selector_t ret;
  781. bool ok = upb_handlers_getselector(f, type, &ret);
  782. UPB_ASSERT(ok);
  783. return ret;
  784. }
  785. static void putstr(VALUE str, const upb_fielddef *f, upb_sink sink) {
  786. upb_sink subsink;
  787. if (str == Qnil) return;
  788. assert(BUILTIN_TYPE(str) == RUBY_T_STRING);
  789. // We should be guaranteed that the string has the correct encoding because
  790. // we ensured this at assignment time and then froze the string.
  791. if (upb_fielddef_type(f) == UPB_TYPE_STRING) {
  792. assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyStringUtf8Encoding);
  793. } else {
  794. assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyString8bitEncoding);
  795. }
  796. upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str),
  797. &subsink);
  798. upb_sink_putstring(subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str),
  799. RSTRING_LEN(str), NULL);
  800. upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));
  801. }
  802. static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink sink,
  803. int depth, bool emit_defaults, bool is_json) {
  804. upb_sink subsink;
  805. VALUE descriptor;
  806. Descriptor* subdesc;
  807. if (submsg == Qnil) return;
  808. descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  809. subdesc = ruby_to_Descriptor(descriptor);
  810. upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink);
  811. putmsg(submsg, subdesc, subsink, depth + 1, emit_defaults, is_json, true);
  812. upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG));
  813. }
  814. static void putary(VALUE ary, const upb_fielddef* f, upb_sink sink, int depth,
  815. bool emit_defaults, bool is_json) {
  816. upb_sink subsink;
  817. upb_fieldtype_t type = upb_fielddef_type(f);
  818. upb_selector_t sel = 0;
  819. int size;
  820. int i;
  821. if (ary == Qnil) return;
  822. if (!emit_defaults && NUM2INT(RepeatedField_length(ary)) == 0) return;
  823. size = NUM2INT(RepeatedField_length(ary));
  824. if (size == 0 && !emit_defaults) return;
  825. upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
  826. if (upb_fielddef_isprimitive(f)) {
  827. sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  828. }
  829. for (i = 0; i < size; i++) {
  830. void* memory = RepeatedField_index_native(ary, i);
  831. switch (type) {
  832. #define T(upbtypeconst, upbtype, ctype) \
  833. case upbtypeconst: \
  834. upb_sink_put##upbtype(subsink, sel, *((ctype*)memory)); \
  835. break;
  836. T(UPB_TYPE_FLOAT, float, float)
  837. T(UPB_TYPE_DOUBLE, double, double)
  838. T(UPB_TYPE_BOOL, bool, int8_t)
  839. case UPB_TYPE_ENUM:
  840. T(UPB_TYPE_INT32, int32, int32_t)
  841. T(UPB_TYPE_UINT32, uint32, uint32_t)
  842. T(UPB_TYPE_INT64, int64, int64_t)
  843. T(UPB_TYPE_UINT64, uint64, uint64_t)
  844. case UPB_TYPE_STRING:
  845. case UPB_TYPE_BYTES:
  846. putstr(*((VALUE *)memory), f, subsink);
  847. break;
  848. case UPB_TYPE_MESSAGE:
  849. putsubmsg(*((VALUE*)memory), f, subsink, depth, emit_defaults, is_json);
  850. break;
  851. #undef T
  852. }
  853. }
  854. upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
  855. }
  856. static void put_ruby_value(VALUE value, const upb_fielddef* f, VALUE type_class,
  857. int depth, upb_sink sink, bool emit_defaults,
  858. bool is_json) {
  859. upb_selector_t sel = 0;
  860. if (depth > ENCODE_MAX_NESTING) {
  861. rb_raise(rb_eRuntimeError,
  862. "Maximum recursion depth exceeded during encoding.");
  863. }
  864. if (upb_fielddef_isprimitive(f)) {
  865. sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  866. }
  867. switch (upb_fielddef_type(f)) {
  868. case UPB_TYPE_INT32:
  869. upb_sink_putint32(sink, sel, NUM2INT(value));
  870. break;
  871. case UPB_TYPE_INT64:
  872. upb_sink_putint64(sink, sel, NUM2LL(value));
  873. break;
  874. case UPB_TYPE_UINT32:
  875. upb_sink_putuint32(sink, sel, NUM2UINT(value));
  876. break;
  877. case UPB_TYPE_UINT64:
  878. upb_sink_putuint64(sink, sel, NUM2ULL(value));
  879. break;
  880. case UPB_TYPE_FLOAT:
  881. upb_sink_putfloat(sink, sel, NUM2DBL(value));
  882. break;
  883. case UPB_TYPE_DOUBLE:
  884. upb_sink_putdouble(sink, sel, NUM2DBL(value));
  885. break;
  886. case UPB_TYPE_ENUM: {
  887. if (TYPE(value) == T_SYMBOL) {
  888. value = rb_funcall(type_class, rb_intern("resolve"), 1, value);
  889. }
  890. upb_sink_putint32(sink, sel, NUM2INT(value));
  891. break;
  892. }
  893. case UPB_TYPE_BOOL:
  894. upb_sink_putbool(sink, sel, value == Qtrue);
  895. break;
  896. case UPB_TYPE_STRING:
  897. case UPB_TYPE_BYTES:
  898. putstr(value, f, sink);
  899. break;
  900. case UPB_TYPE_MESSAGE:
  901. putsubmsg(value, f, sink, depth, emit_defaults, is_json);
  902. }
  903. }
  904. static void putmap(VALUE map, const upb_fielddef* f, upb_sink sink, int depth,
  905. bool emit_defaults, bool is_json) {
  906. Map* self;
  907. upb_sink subsink;
  908. const upb_fielddef* key_field;
  909. const upb_fielddef* value_field;
  910. Map_iter it;
  911. if (map == Qnil) return;
  912. if (!emit_defaults && Map_length(map) == 0) return;
  913. self = ruby_to_Map(map);
  914. upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
  915. assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE);
  916. key_field = map_field_key(f);
  917. value_field = map_field_value(f);
  918. for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) {
  919. VALUE key = Map_iter_key(&it);
  920. VALUE value = Map_iter_value(&it);
  921. upb_status status;
  922. upb_sink entry_sink;
  923. upb_sink_startsubmsg(subsink, getsel(f, UPB_HANDLER_STARTSUBMSG),
  924. &entry_sink);
  925. upb_sink_startmsg(entry_sink);
  926. put_ruby_value(key, key_field, Qnil, depth + 1, entry_sink, emit_defaults,
  927. is_json);
  928. put_ruby_value(value, value_field, self->value_type_class, depth + 1,
  929. entry_sink, emit_defaults, is_json);
  930. upb_sink_endmsg(entry_sink, &status);
  931. upb_sink_endsubmsg(subsink, getsel(f, UPB_HANDLER_ENDSUBMSG));
  932. }
  933. upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
  934. }
  935. static const upb_handlers* msgdef_json_serialize_handlers(
  936. Descriptor* desc, bool preserve_proto_fieldnames);
  937. static void putjsonany(VALUE msg_rb, const Descriptor* desc, upb_sink sink,
  938. int depth, bool emit_defaults) {
  939. upb_status status;
  940. MessageHeader* msg = NULL;
  941. const upb_fielddef* type_field = upb_msgdef_itof(desc->msgdef, UPB_ANY_TYPE);
  942. const upb_fielddef* value_field = upb_msgdef_itof(desc->msgdef, UPB_ANY_VALUE);
  943. size_t type_url_offset;
  944. VALUE type_url_str_rb;
  945. const upb_msgdef *payload_type = NULL;
  946. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  947. upb_sink_startmsg(sink);
  948. /* Handle type url */
  949. type_url_offset = desc->layout->fields[upb_fielddef_index(type_field)].offset;
  950. type_url_str_rb = DEREF(Message_data(msg), type_url_offset, VALUE);
  951. if (RSTRING_LEN(type_url_str_rb) > 0) {
  952. putstr(type_url_str_rb, type_field, sink);
  953. }
  954. {
  955. const char* type_url_str = RSTRING_PTR(type_url_str_rb);
  956. size_t type_url_len = RSTRING_LEN(type_url_str_rb);
  957. DescriptorPool* pool = ruby_to_DescriptorPool(generated_pool);
  958. if (type_url_len <= 20 ||
  959. strncmp(type_url_str, "type.googleapis.com/", 20) != 0) {
  960. rb_raise(rb_eRuntimeError, "Invalid type url: %s", type_url_str);
  961. return;
  962. }
  963. /* Resolve type url */
  964. type_url_str += 20;
  965. type_url_len -= 20;
  966. payload_type = upb_symtab_lookupmsg2(
  967. pool->symtab, type_url_str, type_url_len);
  968. if (payload_type == NULL) {
  969. rb_raise(rb_eRuntimeError, "Unknown type: %s", type_url_str);
  970. return;
  971. }
  972. }
  973. {
  974. uint32_t value_offset;
  975. VALUE value_str_rb;
  976. size_t value_len;
  977. value_offset = desc->layout->fields[upb_fielddef_index(value_field)].offset;
  978. value_str_rb = DEREF(Message_data(msg), value_offset, VALUE);
  979. value_len = RSTRING_LEN(value_str_rb);
  980. if (value_len > 0) {
  981. VALUE payload_desc_rb = get_msgdef_obj(generated_pool, payload_type);
  982. Descriptor* payload_desc = ruby_to_Descriptor(payload_desc_rb);
  983. VALUE payload_class = Descriptor_msgclass(payload_desc_rb);
  984. upb_sink subsink;
  985. bool is_wellknown;
  986. VALUE payload_msg_rb = Message_decode(payload_class, value_str_rb);
  987. is_wellknown =
  988. upb_msgdef_wellknowntype(payload_desc->msgdef) !=
  989. UPB_WELLKNOWN_UNSPECIFIED;
  990. if (is_wellknown) {
  991. upb_sink_startstr(sink, getsel(value_field, UPB_HANDLER_STARTSTR), 0,
  992. &subsink);
  993. }
  994. subsink.handlers =
  995. msgdef_json_serialize_handlers(payload_desc, true);
  996. subsink.closure = sink.closure;
  997. putmsg(payload_msg_rb, payload_desc, subsink, depth, emit_defaults, true,
  998. is_wellknown);
  999. }
  1000. }
  1001. upb_sink_endmsg(sink, &status);
  1002. }
  1003. static void putjsonlistvalue(
  1004. VALUE msg_rb, const Descriptor* desc,
  1005. upb_sink sink, int depth, bool emit_defaults) {
  1006. upb_status status;
  1007. upb_sink subsink;
  1008. MessageHeader* msg = NULL;
  1009. const upb_fielddef* f = upb_msgdef_itof(desc->msgdef, 1);
  1010. uint32_t offset =
  1011. desc->layout->fields[upb_fielddef_index(f)].offset +
  1012. sizeof(MessageHeader);
  1013. VALUE ary;
  1014. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  1015. upb_sink_startmsg(sink);
  1016. ary = DEREF(msg, offset, VALUE);
  1017. if (ary == Qnil || RepeatedField_size(ary) == 0) {
  1018. upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
  1019. upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
  1020. } else {
  1021. putary(ary, f, sink, depth, emit_defaults, true);
  1022. }
  1023. upb_sink_endmsg(sink, &status);
  1024. }
  1025. static void putmsg(VALUE msg_rb, const Descriptor* desc,
  1026. upb_sink sink, int depth, bool emit_defaults,
  1027. bool is_json, bool open_msg) {
  1028. MessageHeader* msg;
  1029. upb_msg_field_iter i;
  1030. upb_status status;
  1031. if (is_json &&
  1032. upb_msgdef_wellknowntype(desc->msgdef) == UPB_WELLKNOWN_ANY) {
  1033. putjsonany(msg_rb, desc, sink, depth, emit_defaults);
  1034. return;
  1035. }
  1036. if (is_json &&
  1037. upb_msgdef_wellknowntype(desc->msgdef) == UPB_WELLKNOWN_LISTVALUE) {
  1038. putjsonlistvalue(msg_rb, desc, sink, depth, emit_defaults);
  1039. return;
  1040. }
  1041. if (open_msg) {
  1042. upb_sink_startmsg(sink);
  1043. }
  1044. // Protect against cycles (possible because users may freely reassign message
  1045. // and repeated fields) by imposing a maximum recursion depth.
  1046. if (depth > ENCODE_MAX_NESTING) {
  1047. rb_raise(rb_eRuntimeError,
  1048. "Maximum recursion depth exceeded during encoding.");
  1049. }
  1050. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  1051. if (desc != msg->descriptor) {
  1052. rb_raise(rb_eArgError,
  1053. "The type of given msg is '%s', expect '%s'.",
  1054. upb_msgdef_fullname(msg->descriptor->msgdef),
  1055. upb_msgdef_fullname(desc->msgdef));
  1056. }
  1057. for (upb_msg_field_begin(&i, desc->msgdef);
  1058. !upb_msg_field_done(&i);
  1059. upb_msg_field_next(&i)) {
  1060. upb_fielddef *f = upb_msg_iter_field(&i);
  1061. const upb_oneofdef *oneof = upb_fielddef_containingoneof(f);
  1062. bool is_matching_oneof = false;
  1063. uint32_t offset =
  1064. desc->layout->fields[upb_fielddef_index(f)].offset +
  1065. sizeof(MessageHeader);
  1066. if (oneof) {
  1067. uint32_t oneof_case =
  1068. slot_read_oneof_case(desc->layout, Message_data(msg), oneof);
  1069. // For a oneof, check that this field is actually present -- skip all the
  1070. // below if not.
  1071. if (oneof_case != upb_fielddef_number(f)) {
  1072. continue;
  1073. }
  1074. // Otherwise, fall through to the appropriate singular-field handler
  1075. // below.
  1076. is_matching_oneof = true;
  1077. }
  1078. if (is_map_field(f)) {
  1079. VALUE map = DEREF(msg, offset, VALUE);
  1080. if (map != Qnil || emit_defaults) {
  1081. putmap(map, f, sink, depth, emit_defaults, is_json);
  1082. }
  1083. } else if (upb_fielddef_isseq(f)) {
  1084. VALUE ary = DEREF(msg, offset, VALUE);
  1085. if (ary != Qnil) {
  1086. putary(ary, f, sink, depth, emit_defaults, is_json);
  1087. }
  1088. } else if (upb_fielddef_isstring(f)) {
  1089. VALUE str = DEREF(msg, offset, VALUE);
  1090. bool is_default = false;
  1091. if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO2) {
  1092. is_default = layout_has(desc->layout, Message_data(msg), f) == Qfalse;
  1093. } else if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO3) {
  1094. is_default = RSTRING_LEN(str) == 0;
  1095. }
  1096. if (is_matching_oneof || emit_defaults || !is_default) {
  1097. putstr(str, f, sink);
  1098. }
  1099. } else if (upb_fielddef_issubmsg(f)) {
  1100. putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth,
  1101. emit_defaults, is_json);
  1102. } else {
  1103. upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  1104. #define T(upbtypeconst, upbtype, ctype, default_value) \
  1105. case upbtypeconst: { \
  1106. ctype value = DEREF(msg, offset, ctype); \
  1107. bool is_default = false; \
  1108. if (upb_fielddef_haspresence(f)) { \
  1109. is_default = layout_has(desc->layout, Message_data(msg), f) == Qfalse; \
  1110. } else if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO3) { \
  1111. is_default = default_value == value; \
  1112. } \
  1113. if (is_matching_oneof || emit_defaults || !is_default) { \
  1114. upb_sink_put##upbtype(sink, sel, value); \
  1115. } \
  1116. } break;
  1117. switch (upb_fielddef_type(f)) {
  1118. T(UPB_TYPE_FLOAT, float, float, 0.0)
  1119. T(UPB_TYPE_DOUBLE, double, double, 0.0)
  1120. T(UPB_TYPE_BOOL, bool, uint8_t, 0)
  1121. case UPB_TYPE_ENUM:
  1122. T(UPB_TYPE_INT32, int32, int32_t, 0)
  1123. T(UPB_TYPE_UINT32, uint32, uint32_t, 0)
  1124. T(UPB_TYPE_INT64, int64, int64_t, 0)
  1125. T(UPB_TYPE_UINT64, uint64, uint64_t, 0)
  1126. case UPB_TYPE_STRING:
  1127. case UPB_TYPE_BYTES:
  1128. case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error.");
  1129. }
  1130. #undef T
  1131. }
  1132. }
  1133. {
  1134. stringsink* unknown = msg->unknown_fields;
  1135. if (unknown != NULL) {
  1136. upb_sink_putunknown(sink, unknown->ptr, unknown->len);
  1137. }
  1138. }
  1139. if (open_msg) {
  1140. upb_sink_endmsg(sink, &status);
  1141. }
  1142. }
  1143. /*
  1144. * call-seq:
  1145. * MessageClass.encode(msg) => bytes
  1146. *
  1147. * Encodes the given message object to its serialized form in protocol buffers
  1148. * wire format.
  1149. */
  1150. VALUE Message_encode(VALUE klass, VALUE msg_rb) {
  1151. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  1152. Descriptor* desc = ruby_to_Descriptor(descriptor);
  1153. stringsink sink;
  1154. stringsink_init(&sink);
  1155. {
  1156. const upb_handlers* serialize_handlers =
  1157. msgdef_pb_serialize_handlers(desc);
  1158. stackenv se;
  1159. upb_pb_encoder* encoder;
  1160. VALUE ret;
  1161. stackenv_init(&se, "Error occurred during encoding: %" PRIsVALUE);
  1162. encoder = upb_pb_encoder_create(se.arena, serialize_handlers, sink.sink);
  1163. putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0, false, false, true);
  1164. ret = rb_str_new(sink.ptr, sink.len);
  1165. stackenv_uninit(&se);
  1166. stringsink_uninit(&sink);
  1167. return ret;
  1168. }
  1169. }
  1170. /*
  1171. * call-seq:
  1172. * MessageClass.encode_json(msg, options = {}) => json_string
  1173. *
  1174. * Encodes the given message object into its serialized JSON representation.
  1175. * @param options [Hash] options for the decoder
  1176. * preserve_proto_fieldnames: set true to use original fieldnames (default is to camelCase)
  1177. * emit_defaults: set true to emit 0/false values (default is to omit them)
  1178. */
  1179. VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) {
  1180. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  1181. Descriptor* desc = ruby_to_Descriptor(descriptor);
  1182. VALUE msg_rb;
  1183. VALUE preserve_proto_fieldnames = Qfalse;
  1184. VALUE emit_defaults = Qfalse;
  1185. stringsink sink;
  1186. if (argc < 1 || argc > 2) {
  1187. rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
  1188. }
  1189. msg_rb = argv[0];
  1190. if (argc == 2) {
  1191. VALUE hash_args = argv[1];
  1192. if (TYPE(hash_args) != T_HASH) {
  1193. rb_raise(rb_eArgError, "Expected hash arguments.");
  1194. }
  1195. preserve_proto_fieldnames = rb_hash_lookup2(
  1196. hash_args, ID2SYM(rb_intern("preserve_proto_fieldnames")), Qfalse);
  1197. emit_defaults = rb_hash_lookup2(
  1198. hash_args, ID2SYM(rb_intern("emit_defaults")), Qfalse);
  1199. }
  1200. stringsink_init(&sink);
  1201. {
  1202. const upb_handlers* serialize_handlers =
  1203. msgdef_json_serialize_handlers(desc, RTEST(preserve_proto_fieldnames));
  1204. upb_json_printer* printer;
  1205. stackenv se;
  1206. VALUE ret;
  1207. stackenv_init(&se, "Error occurred during encoding: %" PRIsVALUE);
  1208. printer = upb_json_printer_create(se.arena, serialize_handlers, sink.sink);
  1209. putmsg(msg_rb, desc, upb_json_printer_input(printer), 0,
  1210. RTEST(emit_defaults), true, true);
  1211. ret = rb_enc_str_new(sink.ptr, sink.len, rb_utf8_encoding());
  1212. stackenv_uninit(&se);
  1213. stringsink_uninit(&sink);
  1214. return ret;
  1215. }
  1216. }
  1217. static void discard_unknown(VALUE msg_rb, const Descriptor* desc) {
  1218. MessageHeader* msg;
  1219. upb_msg_field_iter it;
  1220. TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
  1221. {
  1222. stringsink* unknown = msg->unknown_fields;
  1223. if (unknown != NULL) {
  1224. stringsink_uninit(unknown);
  1225. msg->unknown_fields = NULL;
  1226. }
  1227. }
  1228. for (upb_msg_field_begin(&it, desc->msgdef);
  1229. !upb_msg_field_done(&it);
  1230. upb_msg_field_next(&it)) {
  1231. upb_fielddef *f = upb_msg_iter_field(&it);
  1232. const upb_oneofdef *oneof = upb_fielddef_containingoneof(f);
  1233. uint32_t offset =
  1234. desc->layout->fields[upb_fielddef_index(f)].offset +
  1235. sizeof(MessageHeader);
  1236. if (oneof) {
  1237. uint32_t oneof_case =
  1238. slot_read_oneof_case(desc->layout, Message_data(msg), oneof);
  1239. // For a oneof, check that this field is actually present -- skip all the
  1240. // below if not.
  1241. if (oneof_case != upb_fielddef_number(f)) {
  1242. continue;
  1243. }
  1244. // Otherwise, fall through to the appropriate singular-field handler
  1245. // below.
  1246. }
  1247. if (!upb_fielddef_issubmsg(f)) {
  1248. continue;
  1249. }
  1250. if (is_map_field(f)) {
  1251. VALUE map;
  1252. Map_iter map_it;
  1253. if (!upb_fielddef_issubmsg(map_field_value(f))) continue;
  1254. map = DEREF(msg, offset, VALUE);
  1255. if (map == Qnil) continue;
  1256. for (Map_begin(map, &map_it); !Map_done(&map_it); Map_next(&map_it)) {
  1257. VALUE submsg = Map_iter_value(&map_it);
  1258. VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  1259. const Descriptor* subdesc = ruby_to_Descriptor(descriptor);
  1260. discard_unknown(submsg, subdesc);
  1261. }
  1262. } else if (upb_fielddef_isseq(f)) {
  1263. VALUE ary = DEREF(msg, offset, VALUE);
  1264. int size;
  1265. int i;
  1266. if (ary == Qnil) continue;
  1267. size = NUM2INT(RepeatedField_length(ary));
  1268. for (i = 0; i < size; i++) {
  1269. void* memory = RepeatedField_index_native(ary, i);
  1270. VALUE submsg = *((VALUE *)memory);
  1271. VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  1272. const Descriptor* subdesc = ruby_to_Descriptor(descriptor);
  1273. discard_unknown(submsg, subdesc);
  1274. }
  1275. } else {
  1276. VALUE submsg = DEREF(msg, offset, VALUE);
  1277. VALUE descriptor;
  1278. const Descriptor* subdesc;
  1279. if (submsg == Qnil) continue;
  1280. descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  1281. subdesc = ruby_to_Descriptor(descriptor);
  1282. discard_unknown(submsg, subdesc);
  1283. }
  1284. }
  1285. }
  1286. /*
  1287. * call-seq:
  1288. * Google::Protobuf.discard_unknown(msg)
  1289. *
  1290. * Discard unknown fields in the given message object and recursively discard
  1291. * unknown fields in submessages.
  1292. */
  1293. VALUE Google_Protobuf_discard_unknown(VALUE self, VALUE msg_rb) {
  1294. VALUE klass = CLASS_OF(msg_rb);
  1295. VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  1296. Descriptor* desc = ruby_to_Descriptor(descriptor);
  1297. if (klass == cRepeatedField || klass == cMap) {
  1298. rb_raise(rb_eArgError, "Expected proto msg for discard unknown.");
  1299. } else {
  1300. discard_unknown(msg_rb, desc);
  1301. }
  1302. return Qnil;
  1303. }