|
@@ -0,0 +1,726 @@
|
|
|
|
+#region Copyright notice and license
|
|
|
|
+// Protocol Buffers - Google's data interchange format
|
|
|
|
+// Copyright 2008 Google Inc. All rights reserved.
|
|
|
|
+// https://developers.google.com/protocol-buffers/
|
|
|
|
+//
|
|
|
|
+// Redistribution and use in source and binary forms, with or without
|
|
|
|
+// modification, are permitted provided that the following conditions are
|
|
|
|
+// met:
|
|
|
|
+//
|
|
|
|
+// * Redistributions of source code must retain the above copyright
|
|
|
|
+// notice, this list of conditions and the following disclaimer.
|
|
|
|
+// * Redistributions in binary form must reproduce the above
|
|
|
|
+// copyright notice, this list of conditions and the following disclaimer
|
|
|
|
+// in the documentation and/or other materials provided with the
|
|
|
|
+// distribution.
|
|
|
|
+// * Neither the name of Google Inc. nor the names of its
|
|
|
|
+// contributors may be used to endorse or promote products derived from
|
|
|
|
+// this software without specific prior written permission.
|
|
|
|
+//
|
|
|
|
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
+#endregion
|
|
|
|
+
|
|
|
|
+using System;
|
|
|
|
+using System.Buffers;
|
|
|
|
+using System.Buffers.Binary;
|
|
|
|
+using System.Collections.Generic;
|
|
|
|
+using System.IO;
|
|
|
|
+using System.Runtime.CompilerServices;
|
|
|
|
+using System.Runtime.InteropServices;
|
|
|
|
+using System.Security;
|
|
|
|
+using System.Text;
|
|
|
|
+using Google.Protobuf.Collections;
|
|
|
|
+
|
|
|
|
+namespace Google.Protobuf
|
|
|
|
+{
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Primitives for parsing protobuf wire format.
|
|
|
|
+ /// </summary>
|
|
|
|
+ internal static class ParsingPrimitives
|
|
|
|
+ {
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Reads a length for length-delimited data.
|
|
|
|
+ /// </summary>
|
|
|
|
+ /// <remarks>
|
|
|
|
+ /// This is internally just reading a varint, but this method exists
|
|
|
|
+ /// to make the calling code clearer.
|
|
|
|
+ /// </remarks>
|
|
|
|
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
|
|
+
|
|
|
|
+ public static int ParseLength(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ return (int)ParseRawVarint32(ref buffer, ref state);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Parses the next tag.
|
|
|
|
+ /// If the end of logical stream was reached, an invalid tag of 0 is returned.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static uint ParseTag(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ // The "nextTag" logic is there only as an optimization for reading non-packed repeated / map
|
|
|
|
+ // fields and is strictly speaking not necessary.
|
|
|
|
+ // TODO(jtattermusch): look into simplifying the ParseTag logic.
|
|
|
|
+ if (state.hasNextTag)
|
|
|
|
+ {
|
|
|
|
+ state.lastTag = state.nextTag;
|
|
|
|
+ state.hasNextTag = false;
|
|
|
|
+ return state.lastTag;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Optimize for the incredibly common case of having at least two bytes left in the buffer,
|
|
|
|
+ // and those two bytes being enough to get the tag. This will be true for fields up to 4095.
|
|
|
|
+ if (state.bufferPos + 2 <= state.bufferSize)
|
|
|
|
+ {
|
|
|
|
+ int tmp = buffer[state.bufferPos++];
|
|
|
|
+ if (tmp < 128)
|
|
|
|
+ {
|
|
|
|
+ state.lastTag = (uint)tmp;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ int result = tmp & 0x7f;
|
|
|
|
+ if ((tmp = buffer[state.bufferPos++]) < 128)
|
|
|
|
+ {
|
|
|
|
+ result |= tmp << 7;
|
|
|
|
+ state.lastTag = (uint) result;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ // Nope, rewind and go the potentially slow route.
|
|
|
|
+ state.bufferPos -= 2;
|
|
|
|
+ state.lastTag = ParsingPrimitives.ParseRawVarint32(ref buffer, ref state);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ if (SegmentedBufferHelper.IsAtEnd(ref buffer, ref state))
|
|
|
|
+ {
|
|
|
|
+ state.lastTag = 0;
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ state.lastTag = ParsingPrimitives.ParseRawVarint32(ref buffer, ref state);
|
|
|
|
+ }
|
|
|
|
+ if (WireFormat.GetTagFieldNumber(state.lastTag) == 0)
|
|
|
|
+ {
|
|
|
|
+ // If we actually read a tag with a field of 0, that's not a valid tag.
|
|
|
|
+ throw InvalidProtocolBufferException.InvalidTag();
|
|
|
|
+ }
|
|
|
|
+ return state.lastTag;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Peeks at the next tag in the stream. If it matches <paramref name="tag"/>,
|
|
|
|
+ /// the tag is consumed and the method returns <c>true</c>; otherwise, the
|
|
|
|
+ /// stream is left in the original position and the method returns <c>false</c>.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static bool MaybeConsumeTag(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state, uint tag)
|
|
|
|
+ {
|
|
|
|
+ if (PeekTag(ref buffer, ref state) == tag)
|
|
|
|
+ {
|
|
|
|
+ state.hasNextTag = false;
|
|
|
|
+ return true;
|
|
|
|
+ }
|
|
|
|
+ return false;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Peeks at the next field tag. This is like calling <see cref="ReadTag"/>, but the
|
|
|
|
+ /// tag is not consumed. (So a subsequent call to <see cref="ReadTag"/> will return the
|
|
|
|
+ /// same value.)
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static uint PeekTag(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ if (state.hasNextTag)
|
|
|
|
+ {
|
|
|
|
+ return state.nextTag;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ uint savedLast = state.lastTag;
|
|
|
|
+ state.nextTag = ParseTag(ref buffer, ref state);
|
|
|
|
+ state.hasNextTag = true;
|
|
|
|
+ state.lastTag = savedLast; // Undo the side effect of ReadTag
|
|
|
|
+ return state.nextTag;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Parses a raw varint.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static ulong ParseRawVarint64(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ if (state.bufferPos + 10 > state.bufferSize)
|
|
|
|
+ {
|
|
|
|
+ return ParseRawVarint64SlowPath(ref buffer, ref state);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ ulong result = buffer[state.bufferPos++];
|
|
|
|
+ if (result < 128)
|
|
|
|
+ {
|
|
|
|
+ return result;
|
|
|
|
+ }
|
|
|
|
+ result &= 0x7f;
|
|
|
|
+ int shift = 7;
|
|
|
|
+ do
|
|
|
|
+ {
|
|
|
|
+ byte b = buffer[state.bufferPos++];
|
|
|
|
+ result |= (ulong)(b & 0x7F) << shift;
|
|
|
|
+ if (b < 0x80)
|
|
|
|
+ {
|
|
|
|
+ return result;
|
|
|
|
+ }
|
|
|
|
+ shift += 7;
|
|
|
|
+ }
|
|
|
|
+ while (shift < 64);
|
|
|
|
+
|
|
|
|
+ throw InvalidProtocolBufferException.MalformedVarint();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ private static ulong ParseRawVarint64SlowPath(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ int shift = 0;
|
|
|
|
+ ulong result = 0;
|
|
|
|
+ do
|
|
|
|
+ {
|
|
|
|
+ byte b = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ result |= (ulong)(b & 0x7F) << shift;
|
|
|
|
+ if (b < 0x80)
|
|
|
|
+ {
|
|
|
|
+ return result;
|
|
|
|
+ }
|
|
|
|
+ shift += 7;
|
|
|
|
+ }
|
|
|
|
+ while (shift < 64);
|
|
|
|
+
|
|
|
|
+ throw InvalidProtocolBufferException.MalformedVarint();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Parses a raw Varint. If larger than 32 bits, discard the upper bits.
|
|
|
|
+ /// This method is optimised for the case where we've got lots of data in the buffer.
|
|
|
|
+ /// That means we can check the size just once, then just read directly from the buffer
|
|
|
|
+ /// without constant rechecking of the buffer length.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static uint ParseRawVarint32(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ if (state.bufferPos + 5 > state.bufferSize)
|
|
|
|
+ {
|
|
|
|
+ return ParseRawVarint32SlowPath(ref buffer, ref state);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ int tmp = buffer[state.bufferPos++];
|
|
|
|
+ if (tmp < 128)
|
|
|
|
+ {
|
|
|
|
+ return (uint)tmp;
|
|
|
|
+ }
|
|
|
|
+ int result = tmp & 0x7f;
|
|
|
|
+ if ((tmp = buffer[state.bufferPos++]) < 128)
|
|
|
|
+ {
|
|
|
|
+ result |= tmp << 7;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ result |= (tmp & 0x7f) << 7;
|
|
|
|
+ if ((tmp = buffer[state.bufferPos++]) < 128)
|
|
|
|
+ {
|
|
|
|
+ result |= tmp << 14;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ result |= (tmp & 0x7f) << 14;
|
|
|
|
+ if ((tmp = buffer[state.bufferPos++]) < 128)
|
|
|
|
+ {
|
|
|
|
+ result |= tmp << 21;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ result |= (tmp & 0x7f) << 21;
|
|
|
|
+ result |= (tmp = buffer[state.bufferPos++]) << 28;
|
|
|
|
+ if (tmp >= 128)
|
|
|
|
+ {
|
|
|
|
+ // Discard upper 32 bits.
|
|
|
|
+ // Note that this has to use ReadRawByte() as we only ensure we've
|
|
|
|
+ // got at least 5 bytes at the start of the method. This lets us
|
|
|
|
+ // use the fast path in more cases, and we rarely hit this section of code.
|
|
|
|
+ for (int i = 0; i < 5; i++)
|
|
|
|
+ {
|
|
|
|
+ if (ReadRawByte(ref buffer, ref state) < 128)
|
|
|
|
+ {
|
|
|
|
+ return (uint) result;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ throw InvalidProtocolBufferException.MalformedVarint();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ return (uint)result;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ private static uint ParseRawVarint32SlowPath(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ int tmp = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ if (tmp < 128)
|
|
|
|
+ {
|
|
|
|
+ return (uint) tmp;
|
|
|
|
+ }
|
|
|
|
+ int result = tmp & 0x7f;
|
|
|
|
+ if ((tmp = ReadRawByte(ref buffer, ref state)) < 128)
|
|
|
|
+ {
|
|
|
|
+ result |= tmp << 7;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ result |= (tmp & 0x7f) << 7;
|
|
|
|
+ if ((tmp = ReadRawByte(ref buffer, ref state)) < 128)
|
|
|
|
+ {
|
|
|
|
+ result |= tmp << 14;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ result |= (tmp & 0x7f) << 14;
|
|
|
|
+ if ((tmp = ReadRawByte(ref buffer, ref state)) < 128)
|
|
|
|
+ {
|
|
|
|
+ result |= tmp << 21;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ result |= (tmp & 0x7f) << 21;
|
|
|
|
+ result |= (tmp = ReadRawByte(ref buffer, ref state)) << 28;
|
|
|
|
+ if (tmp >= 128)
|
|
|
|
+ {
|
|
|
|
+ // Discard upper 32 bits.
|
|
|
|
+ for (int i = 0; i < 5; i++)
|
|
|
|
+ {
|
|
|
|
+ if (ReadRawByte(ref buffer, ref state) < 128)
|
|
|
|
+ {
|
|
|
|
+ return (uint) result;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ throw InvalidProtocolBufferException.MalformedVarint();
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ return (uint) result;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Parses a 32-bit little-endian integer.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static uint ParseRawLittleEndian32(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ const int length = sizeof(uint);
|
|
|
|
+ if (state.bufferPos + length > state.bufferSize)
|
|
|
|
+ {
|
|
|
|
+ return ParseRawLittleEndian32SlowPath(ref buffer, ref state);
|
|
|
|
+ }
|
|
|
|
+ uint result = BinaryPrimitives.ReadUInt32LittleEndian(buffer.Slice(state.bufferPos, length));
|
|
|
|
+ state.bufferPos += length;
|
|
|
|
+ return result;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ private static uint ParseRawLittleEndian32SlowPath(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ uint b1 = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ uint b2 = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ uint b3 = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ uint b4 = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Parses a 64-bit little-endian integer.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static ulong ParseRawLittleEndian64(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ const int length = sizeof(ulong);
|
|
|
|
+ if (state.bufferPos + length > state.bufferSize)
|
|
|
|
+ {
|
|
|
|
+ return ParseRawLittleEndian64SlowPath(ref buffer, ref state);
|
|
|
|
+ }
|
|
|
|
+ ulong result = BinaryPrimitives.ReadUInt64LittleEndian(buffer.Slice(state.bufferPos, length));
|
|
|
|
+ state.bufferPos += length;
|
|
|
|
+ return result;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ private static ulong ParseRawLittleEndian64SlowPath(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ ulong b1 = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ ulong b2 = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ ulong b3 = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ ulong b4 = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ ulong b5 = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ ulong b6 = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ ulong b7 = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ ulong b8 = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24)
|
|
|
|
+ | (b5 << 32) | (b6 << 40) | (b7 << 48) | (b8 << 56);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Parses a double value.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static double ParseDouble(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ const int length = sizeof(double);
|
|
|
|
+ if (!BitConverter.IsLittleEndian || state.bufferPos + length > state.bufferSize)
|
|
|
|
+ {
|
|
|
|
+ return BitConverter.Int64BitsToDouble((long)ParseRawLittleEndian64(ref buffer, ref state));
|
|
|
|
+ }
|
|
|
|
+ // ReadUnaligned uses processor architecture for endianness.
|
|
|
|
+ double result = Unsafe.ReadUnaligned<double>(ref MemoryMarshal.GetReference(buffer.Slice(state.bufferPos, length)));
|
|
|
|
+ state.bufferPos += length;
|
|
|
|
+ return result;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Parses a float value.
|
|
|
|
+ /// </summary>
|
|
|
|
+ public static float ParseFloat(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ const int length = sizeof(float);
|
|
|
|
+ if (!BitConverter.IsLittleEndian || state.bufferPos + length > state.bufferSize)
|
|
|
|
+ {
|
|
|
|
+ return ParseFloatSlow(ref buffer, ref state);
|
|
|
|
+ }
|
|
|
|
+ // ReadUnaligned uses processor architecture for endianness.
|
|
|
|
+ float result = Unsafe.ReadUnaligned<float>(ref MemoryMarshal.GetReference(buffer.Slice(state.bufferPos, length)));
|
|
|
|
+ state.bufferPos += length;
|
|
|
|
+ return result;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ private static unsafe float ParseFloatSlow(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ const int length = sizeof(float);
|
|
|
|
+ byte* stackBuffer = stackalloc byte[length];
|
|
|
|
+ Span<byte> tempSpan = new Span<byte>(stackBuffer, length);
|
|
|
|
+ for (int i = 0; i < length; i++)
|
|
|
|
+ {
|
|
|
|
+ tempSpan[i] = ReadRawByte(ref buffer, ref state);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Content is little endian. Reverse if needed to match endianness of architecture.
|
|
|
|
+ if (!BitConverter.IsLittleEndian)
|
|
|
|
+ {
|
|
|
|
+ tempSpan.Reverse();
|
|
|
|
+ }
|
|
|
|
+ return Unsafe.ReadUnaligned<float>(ref MemoryMarshal.GetReference(tempSpan));
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Reads a fixed size of bytes from the input.
|
|
|
|
+ /// </summary>
|
|
|
|
+ /// <exception cref="InvalidProtocolBufferException">
|
|
|
|
+ /// the end of the stream or the current limit was reached
|
|
|
|
+ /// </exception>
|
|
|
|
+ public static byte[] ReadRawBytes(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state, int size)
|
|
|
|
+ {
|
|
|
|
+ if (size < 0)
|
|
|
|
+ {
|
|
|
|
+ throw InvalidProtocolBufferException.NegativeSize();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (state.totalBytesRetired + state.bufferPos + size > state.currentLimit)
|
|
|
|
+ {
|
|
|
|
+ // Read to the end of the stream (up to the current limit) anyway.
|
|
|
|
+ SkipRawBytes(ref buffer, ref state, state.currentLimit - state.totalBytesRetired - state.bufferPos);
|
|
|
|
+ // Then fail.
|
|
|
|
+ throw InvalidProtocolBufferException.TruncatedMessage();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (size <= state.bufferSize - state.bufferPos)
|
|
|
|
+ {
|
|
|
|
+ // We have all the bytes we need already.
|
|
|
|
+ byte[] bytes = new byte[size];
|
|
|
|
+ buffer.Slice(state.bufferPos, size).CopyTo(bytes);
|
|
|
|
+ state.bufferPos += size;
|
|
|
|
+ return bytes;
|
|
|
|
+ }
|
|
|
|
+ else if (size < buffer.Length || size < state.segmentedBufferHelper.TotalLength)
|
|
|
|
+ {
|
|
|
|
+ // Reading more bytes than are in the buffer, but not an excessive number
|
|
|
|
+ // of bytes. We can safely allocate the resulting array ahead of time.
|
|
|
|
+
|
|
|
|
+ // First copy what we have.
|
|
|
|
+ byte[] bytes = new byte[size];
|
|
|
|
+ var bytesSpan = new Span<byte>(bytes);
|
|
|
|
+ int pos = state.bufferSize - state.bufferPos;
|
|
|
|
+ buffer.Slice(state.bufferPos, pos).CopyTo(bytesSpan.Slice(0, pos));
|
|
|
|
+ state.bufferPos = state.bufferSize;
|
|
|
|
+
|
|
|
|
+ // We want to use RefillBuffer() and then copy from the buffer into our
|
|
|
|
+ // byte array rather than reading directly into our byte array because
|
|
|
|
+ // the input may be unbuffered.
|
|
|
|
+ state.segmentedBufferHelper.RefillBuffer(ref buffer, ref state, true);
|
|
|
|
+
|
|
|
|
+ while (size - pos > state.bufferSize)
|
|
|
|
+ {
|
|
|
|
+ buffer.Slice(0, state.bufferSize)
|
|
|
|
+ .CopyTo(bytesSpan.Slice(pos, state.bufferSize));
|
|
|
|
+ pos += state.bufferSize;
|
|
|
|
+ state.bufferPos = state.bufferSize;
|
|
|
|
+ state.segmentedBufferHelper.RefillBuffer(ref buffer, ref state, true);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ buffer.Slice(0, size - pos)
|
|
|
|
+ .CopyTo(bytesSpan.Slice(pos, size - pos));
|
|
|
|
+ state.bufferPos = size - pos;
|
|
|
|
+
|
|
|
|
+ return bytes;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ // The size is very large. For security reasons, we can't allocate the
|
|
|
|
+ // entire byte array yet. The size comes directly from the input, so a
|
|
|
|
+ // maliciously-crafted message could provide a bogus very large size in
|
|
|
|
+ // order to trick the app into allocating a lot of memory. We avoid this
|
|
|
|
+ // by allocating and reading only a small chunk at a time, so that the
|
|
|
|
+ // malicious message must actually *be* extremely large to cause
|
|
|
|
+ // problems. Meanwhile, we limit the allowed size of a message elsewhere.
|
|
|
|
+
|
|
|
|
+ List<byte[]> chunks = new List<byte[]>();
|
|
|
|
+
|
|
|
|
+ int pos = state.bufferSize - state.bufferPos;
|
|
|
|
+ byte[] firstChunk = new byte[pos];
|
|
|
|
+ buffer.Slice(state.bufferPos, pos).CopyTo(firstChunk);
|
|
|
|
+ chunks.Add(firstChunk);
|
|
|
|
+ state.bufferPos = state.bufferSize;
|
|
|
|
+
|
|
|
|
+ // Read all the rest of the bytes we need.
|
|
|
|
+ int sizeLeft = size - pos;
|
|
|
|
+ while (sizeLeft > 0)
|
|
|
|
+ {
|
|
|
|
+ state.segmentedBufferHelper.RefillBuffer(ref buffer, ref state, true);
|
|
|
|
+ byte[] chunk = new byte[Math.Min(sizeLeft, state.bufferSize)];
|
|
|
|
+
|
|
|
|
+ buffer.Slice(0, chunk.Length)
|
|
|
|
+ .CopyTo(chunk);
|
|
|
|
+ state.bufferPos += chunk.Length;
|
|
|
|
+ sizeLeft -= chunk.Length;
|
|
|
|
+ chunks.Add(chunk);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // OK, got everything. Now concatenate it all into one buffer.
|
|
|
|
+ byte[] bytes = new byte[size];
|
|
|
|
+ int newPos = 0;
|
|
|
|
+ foreach (byte[] chunk in chunks)
|
|
|
|
+ {
|
|
|
|
+ Buffer.BlockCopy(chunk, 0, bytes, newPos, chunk.Length);
|
|
|
|
+ newPos += chunk.Length;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // Done.
|
|
|
|
+ return bytes;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Reads and discards <paramref name="size"/> bytes.
|
|
|
|
+ /// </summary>
|
|
|
|
+ /// <exception cref="InvalidProtocolBufferException">the end of the stream
|
|
|
|
+ /// or the current limit was reached</exception>
|
|
|
|
+ public static void SkipRawBytes(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state, int size)
|
|
|
|
+ {
|
|
|
|
+ if (size < 0)
|
|
|
|
+ {
|
|
|
|
+ throw InvalidProtocolBufferException.NegativeSize();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (state.totalBytesRetired + state.bufferPos + size > state.currentLimit)
|
|
|
|
+ {
|
|
|
|
+ // Read to the end of the stream anyway.
|
|
|
|
+ SkipRawBytes(ref buffer, ref state, state.currentLimit - state.totalBytesRetired - state.bufferPos);
|
|
|
|
+ // Then fail.
|
|
|
|
+ throw InvalidProtocolBufferException.TruncatedMessage();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (size <= state.bufferSize - state.bufferPos)
|
|
|
|
+ {
|
|
|
|
+ // We have all the bytes we need already.
|
|
|
|
+ state.bufferPos += size;
|
|
|
|
+ }
|
|
|
|
+ else
|
|
|
|
+ {
|
|
|
|
+ // TODO: do we need to support skipping in seekable Streams?
|
|
|
|
+
|
|
|
|
+ // Skipping more bytes than are in the buffer. First skip what we have.
|
|
|
|
+ int pos = state.bufferSize - state.bufferPos;
|
|
|
|
+ state.bufferPos = state.bufferSize;
|
|
|
|
+
|
|
|
|
+ state.segmentedBufferHelper.RefillBuffer(ref buffer, ref state, true);
|
|
|
|
+
|
|
|
|
+ while (size - pos > state.bufferSize)
|
|
|
|
+ {
|
|
|
|
+ pos += state.bufferSize;
|
|
|
|
+ state.bufferPos = state.bufferSize;
|
|
|
|
+ state.segmentedBufferHelper.RefillBuffer(ref buffer, ref state, true);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ state.bufferPos = size - pos;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ public static string ReadString(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ int length = ParsingPrimitives.ParseLength(ref buffer, ref state);
|
|
|
|
+ return ParsingPrimitives.ReadRawString(ref buffer, ref state, length);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Reads a bytes field value from the input.
|
|
|
|
+ /// </summary>
|
|
|
|
+ [MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
|
|
+ public static ByteString ReadBytes(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ int length = ParsingPrimitives.ParseLength(ref buffer, ref state);
|
|
|
|
+ return ByteString.AttachBytes(ParsingPrimitives.ReadRawBytes(ref buffer, ref state, length));
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Reads a UTF-8 string from the next "length" bytes.
|
|
|
|
+ /// </summary>
|
|
|
|
+ /// <exception cref="InvalidProtocolBufferException">
|
|
|
|
+ /// the end of the stream or the current limit was reached
|
|
|
|
+ /// </exception>
|
|
|
|
+ public static string ReadRawString(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state, int length)
|
|
|
|
+ {
|
|
|
|
+ // No need to read any data for an empty string.
|
|
|
|
+ if (length == 0)
|
|
|
|
+ {
|
|
|
|
+ return string.Empty;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (length < 0)
|
|
|
|
+ {
|
|
|
|
+ throw InvalidProtocolBufferException.NegativeSize();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+#if GOOGLE_PROTOBUF_SUPPORT_FAST_STRING
|
|
|
|
+ if (length <= state.bufferSize - state.bufferPos && length > 0)
|
|
|
|
+ {
|
|
|
|
+ // Fast path: all bytes to decode appear in the same span.
|
|
|
|
+ ReadOnlySpan<byte> data = buffer.Slice(state.bufferPos, length);
|
|
|
|
+
|
|
|
|
+ string value;
|
|
|
|
+ unsafe
|
|
|
|
+ {
|
|
|
|
+ fixed (byte* sourceBytes = &MemoryMarshal.GetReference(data))
|
|
|
|
+ {
|
|
|
|
+ value = CodedOutputStream.Utf8Encoding.GetString(sourceBytes, length);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ state.bufferPos += length;
|
|
|
|
+ return value;
|
|
|
|
+ }
|
|
|
|
+#endif
|
|
|
|
+
|
|
|
|
+ // TODO: what if GOOGLE_PROTOBUF_SUPPORT_FAST_STRING is not supported?
|
|
|
|
+ // -> can we still try to grab an array from the span?
|
|
|
|
+ // if (length <= state.bufferSize - state.bufferPos && length > 0)
|
|
|
|
+ // {
|
|
|
|
+ // // Fast path: We already have the bytes in a contiguous buffer, so
|
|
|
|
+ // // just copy directly from it.
|
|
|
|
+ // String result = CodedOutputStream.Utf8Encoding.GetString(buffer, state.bufferPos, length);
|
|
|
|
+ // state.bufferPos += length;
|
|
|
|
+ // return result;
|
|
|
|
+ // }
|
|
|
|
+
|
|
|
|
+ // TODO: creating a char[] and decoding into it and then creating a string from that array might be more efficient
|
|
|
|
+ // Slow path: Build a byte array first then copy it.
|
|
|
|
+ return CodedOutputStream.Utf8Encoding.GetString(ReadRawBytes(ref buffer, ref state, length), 0, length);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ private static byte ReadRawByte(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state)
|
|
|
|
+ {
|
|
|
|
+ if (state.bufferPos == state.bufferSize)
|
|
|
|
+ {
|
|
|
|
+ state.segmentedBufferHelper.RefillBuffer(ref buffer, ref state, true);
|
|
|
|
+ }
|
|
|
|
+ return buffer[state.bufferPos++];
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Reads a varint from the input one byte at a time, so that it does not
|
|
|
|
+ /// read any bytes after the end of the varint. If you simply wrapped the
|
|
|
|
+ /// stream in a CodedInputStream and used ReadRawVarint32(Stream)
|
|
|
|
+ /// then you would probably end up reading past the end of the varint since
|
|
|
|
+ /// CodedInputStream buffers its input.
|
|
|
|
+ /// </summary>
|
|
|
|
+ /// <param name="input"></param>
|
|
|
|
+ /// <returns></returns>
|
|
|
|
+ public static uint ReadRawVarint32(Stream input)
|
|
|
|
+ {
|
|
|
|
+ int result = 0;
|
|
|
|
+ int offset = 0;
|
|
|
|
+ for (; offset < 32; offset += 7)
|
|
|
|
+ {
|
|
|
|
+ int b = input.ReadByte();
|
|
|
|
+ if (b == -1)
|
|
|
|
+ {
|
|
|
|
+ throw InvalidProtocolBufferException.TruncatedMessage();
|
|
|
|
+ }
|
|
|
|
+ result |= (b & 0x7f) << offset;
|
|
|
|
+ if ((b & 0x80) == 0)
|
|
|
|
+ {
|
|
|
|
+ return (uint) result;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ // Keep reading up to 64 bits.
|
|
|
|
+ for (; offset < 64; offset += 7)
|
|
|
|
+ {
|
|
|
|
+ int b = input.ReadByte();
|
|
|
|
+ if (b == -1)
|
|
|
|
+ {
|
|
|
|
+ throw InvalidProtocolBufferException.TruncatedMessage();
|
|
|
|
+ }
|
|
|
|
+ if ((b & 0x80) == 0)
|
|
|
|
+ {
|
|
|
|
+ return (uint) result;
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ throw InvalidProtocolBufferException.MalformedVarint();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Decode a 32-bit value with ZigZag encoding.
|
|
|
|
+ /// </summary>
|
|
|
|
+ /// <remarks>
|
|
|
|
+ /// ZigZag encodes signed integers into values that can be efficiently
|
|
|
|
+ /// encoded with varint. (Otherwise, negative values must be
|
|
|
|
+ /// sign-extended to 32 bits to be varint encoded, thus always taking
|
|
|
|
+ /// 5 bytes on the wire.)
|
|
|
|
+ /// </remarks>
|
|
|
|
+ public static int DecodeZigZag32(uint n)
|
|
|
|
+ {
|
|
|
|
+ return (int)(n >> 1) ^ -(int)(n & 1);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /// <summary>
|
|
|
|
+ /// Decode a 64-bit value with ZigZag encoding.
|
|
|
|
+ /// </summary>
|
|
|
|
+ /// <remarks>
|
|
|
|
+ /// ZigZag encodes signed integers into values that can be efficiently
|
|
|
|
+ /// encoded with varint. (Otherwise, negative values must be
|
|
|
|
+ /// sign-extended to 64 bits to be varint encoded, thus always taking
|
|
|
|
+ /// 10 bytes on the wire.)
|
|
|
|
+ /// </remarks>
|
|
|
|
+ public static long DecodeZigZag64(ulong n)
|
|
|
|
+ {
|
|
|
|
+ return (long)(n >> 1) ^ -(long)(n & 1);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+}
|