| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 | 
							- #!/usr/bin/env python
 
- # Copyright 2017 gRPC authors.
 
- #
 
- # Licensed under the Apache License, Version 2.0 (the "License");
 
- # you may not use this file except in compliance with the License.
 
- # You may obtain a copy of the License at
 
- #
 
- #     http://www.apache.org/licenses/LICENSE-2.0
 
- #
 
- # Unless required by applicable law or agreed to in writing, software
 
- # distributed under the License is distributed on an "AS IS" BASIS,
 
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
- # See the License for the specific language governing permissions and
 
- # limitations under the License.
 
- import cgi
 
- import multiprocessing
 
- import os
 
- import subprocess
 
- import sys
 
- import argparse
 
- import python_utils.jobset as jobset
 
- import python_utils.start_port_server as start_port_server
 
- sys.path.append(os.path.join(os.path.dirname(sys.argv[0]), '..', 'profiling', 'microbenchmarks', 'bm_diff'))
 
- import bm_constants
 
- flamegraph_dir = os.path.join(os.path.expanduser('~'), 'FlameGraph')
 
- os.chdir(os.path.join(os.path.dirname(sys.argv[0]), '../..'))
 
- if not os.path.exists('reports'):
 
-   os.makedirs('reports')
 
- start_port_server.start_port_server()
 
- def fnize(s):
 
-   out = ''
 
-   for c in s:
 
-     if c in '<>, /':
 
-       if len(out) and out[-1] == '_': continue
 
-       out += '_'
 
-     else:
 
-       out += c
 
-   return out
 
- # index html
 
- index_html = """
 
- <html>
 
- <head>
 
- <title>Microbenchmark Results</title>
 
- </head>
 
- <body>
 
- """
 
- def heading(name):
 
-   global index_html
 
-   index_html += "<h1>%s</h1>\n" % name
 
- def link(txt, tgt):
 
-   global index_html
 
-   index_html += "<p><a href=\"%s\">%s</a></p>\n" % (
 
-       cgi.escape(tgt, quote=True), cgi.escape(txt))
 
- def text(txt):
 
-   global index_html
 
-   index_html += "<p><pre>%s</pre></p>\n" % cgi.escape(txt)
 
- def collect_latency(bm_name, args):
 
-   """generate latency profiles"""
 
-   benchmarks = []
 
-   profile_analysis = []
 
-   cleanup = []
 
-   heading('Latency Profiles: %s' % bm_name)
 
-   subprocess.check_call(
 
-       ['make', bm_name,
 
-        'CONFIG=basicprof', '-j', '%d' % multiprocessing.cpu_count()])
 
-   for line in subprocess.check_output(['bins/basicprof/%s' % bm_name,
 
-                                        '--benchmark_list_tests']).splitlines():
 
-     link(line, '%s.txt' % fnize(line))
 
-     benchmarks.append(
 
-         jobset.JobSpec(['bins/basicprof/%s' % bm_name,
 
-                         '--benchmark_filter=^%s$' % line,
 
-                         '--benchmark_min_time=0.05'],
 
-                        environ={'LATENCY_TRACE': '%s.trace' % fnize(line)}))
 
-     profile_analysis.append(
 
-         jobset.JobSpec([sys.executable,
 
-                         'tools/profiling/latency_profile/profile_analyzer.py',
 
-                         '--source', '%s.trace' % fnize(line), '--fmt', 'simple',
 
-                         '--out', 'reports/%s.txt' % fnize(line)], timeout_seconds=None))
 
-     cleanup.append(jobset.JobSpec(['rm', '%s.trace' % fnize(line)]))
 
-     # periodically flush out the list of jobs: profile_analysis jobs at least
 
-     # consume upwards of five gigabytes of ram in some cases, and so analysing
 
-     # hundreds of them at once is impractical -- but we want at least some
 
-     # concurrency or the work takes too long
 
-     if len(benchmarks) >= min(16, multiprocessing.cpu_count()):
 
-       # run up to half the cpu count: each benchmark can use up to two cores
 
-       # (one for the microbenchmark, one for the data flush)
 
-       jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count()/2))
 
-       jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count())
 
-       jobset.run(cleanup, maxjobs=multiprocessing.cpu_count())
 
-       benchmarks = []
 
-       profile_analysis = []
 
-       cleanup = []
 
-   # run the remaining benchmarks that weren't flushed
 
-   if len(benchmarks):
 
-     jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count()/2))
 
-     jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count())
 
-     jobset.run(cleanup, maxjobs=multiprocessing.cpu_count())
 
- def collect_perf(bm_name, args):
 
-   """generate flamegraphs"""
 
-   heading('Flamegraphs: %s' % bm_name)
 
-   subprocess.check_call(
 
-       ['make', bm_name,
 
-        'CONFIG=mutrace', '-j', '%d' % multiprocessing.cpu_count()])
 
-   benchmarks = []
 
-   profile_analysis = []
 
-   cleanup = []
 
-   for line in subprocess.check_output(['bins/mutrace/%s' % bm_name,
 
-                                        '--benchmark_list_tests']).splitlines():
 
-     link(line, '%s.svg' % fnize(line))
 
-     benchmarks.append(
 
-         jobset.JobSpec(['perf', 'record', '-o', '%s-perf.data' % fnize(line),
 
-                         '-g', '-F', '997',
 
-                         'bins/mutrace/%s' % bm_name,
 
-                         '--benchmark_filter=^%s$' % line,
 
-                         '--benchmark_min_time=10']))
 
-     profile_analysis.append(
 
-         jobset.JobSpec(['tools/run_tests/performance/process_local_perf_flamegraphs.sh'],
 
-                        environ = {
 
-                            'PERF_BASE_NAME': fnize(line),
 
-                            'OUTPUT_DIR': 'reports',
 
-                            'OUTPUT_FILENAME': fnize(line),
 
-                        }))
 
-     cleanup.append(jobset.JobSpec(['rm', '%s-perf.data' % fnize(line)]))
 
-     cleanup.append(jobset.JobSpec(['rm', '%s-out.perf' % fnize(line)]))
 
-     # periodically flush out the list of jobs: temporary space required for this
 
-     # processing is large
 
-     if len(benchmarks) >= 20:
 
-       # run up to half the cpu count: each benchmark can use up to two cores
 
-       # (one for the microbenchmark, one for the data flush)
 
-       jobset.run(benchmarks, maxjobs=1)
 
-       jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count())
 
-       jobset.run(cleanup, maxjobs=multiprocessing.cpu_count())
 
-       benchmarks = []
 
-       profile_analysis = []
 
-       cleanup = []
 
-   # run the remaining benchmarks that weren't flushed
 
-   if len(benchmarks):
 
-     jobset.run(benchmarks, maxjobs=1)
 
-     jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count())
 
-     jobset.run(cleanup, maxjobs=multiprocessing.cpu_count())
 
- def run_summary(bm_name, cfg, base_json_name):
 
-   subprocess.check_call(
 
-       ['make', bm_name,
 
-        'CONFIG=%s' % cfg, '-j', '%d' % multiprocessing.cpu_count()])
 
-   cmd = ['bins/%s/%s' % (cfg, bm_name),
 
-          '--benchmark_out=%s.%s.json' % (base_json_name, cfg),
 
-          '--benchmark_out_format=json']
 
-   if args.summary_time is not None:
 
-     cmd += ['--benchmark_min_time=%d' % args.summary_time]
 
-   return subprocess.check_output(cmd)
 
- def collect_summary(bm_name, args):
 
-   heading('Summary: %s [no counters]' % bm_name)
 
-   text(run_summary(bm_name, 'opt', bm_name))
 
-   heading('Summary: %s [with counters]' % bm_name)
 
-   text(run_summary(bm_name, 'counters', bm_name))
 
-   if args.bigquery_upload:
 
-     with open('%s.csv' % bm_name, 'w') as f:
 
-       f.write(subprocess.check_output(['tools/profiling/microbenchmarks/bm2bq.py',
 
-                                        '%s.counters.json' % bm_name,
 
-                                        '%s.opt.json' % bm_name]))
 
-     subprocess.check_call(['bq', 'load', 'microbenchmarks.microbenchmarks', '%s.csv' % bm_name])
 
- collectors = {
 
-   'latency': collect_latency,
 
-   'perf': collect_perf,
 
-   'summary': collect_summary,
 
- }
 
- argp = argparse.ArgumentParser(description='Collect data from microbenchmarks')
 
- argp.add_argument('-c', '--collect',
 
-                   choices=sorted(collectors.keys()),
 
-                   nargs='*',
 
-                   default=sorted(collectors.keys()),
 
-                   help='Which collectors should be run against each benchmark')
 
- argp.add_argument('-b', '--benchmarks',
 
-                   choices=bm_constants._AVAILABLE_BENCHMARK_TESTS,
 
-                   default=bm_constants._AVAILABLE_BENCHMARK_TESTS,
 
-                   nargs='+',
 
-                   type=str,
 
-                   help='Which microbenchmarks should be run')
 
- argp.add_argument('--bigquery_upload',
 
-                   default=False,
 
-                   action='store_const',
 
-                   const=True,
 
-                   help='Upload results from summary collection to bigquery')
 
- argp.add_argument('--summary_time',
 
-                   default=None,
 
-                   type=int,
 
-                   help='Minimum time to run benchmarks for the summary collection')
 
- args = argp.parse_args()
 
- try:
 
-   for collect in args.collect:
 
-     for bm_name in args.benchmarks:
 
-       collectors[collect](bm_name, args)
 
- finally:
 
-   if not os.path.exists('reports'):
 
-     os.makedirs('reports')
 
-   index_html += "</body>\n</html>\n"
 
-   with open('reports/index.html', 'w') as f:
 
-     f.write(index_html)
 
 
  |