| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154 | #!/usr/bin/env python2.7# Copyright 2017, Google Inc.# All rights reserved.## Redistribution and use in source and binary forms, with or without# modification, are permitted provided that the following conditions are# met:##     * Redistributions of source code must retain the above copyright# notice, this list of conditions and the following disclaimer.#     * Redistributions in binary form must reproduce the above# copyright notice, this list of conditions and the following disclaimer# in the documentation and/or other materials provided with the# distribution.#     * Neither the name of Google Inc. nor the names of its# contributors may be used to endorse or promote products derived from# this software without specific prior written permission.## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.""" Computes the diff between two bm runs and outputs significant results """import bm_jsonimport bm_constantsimport bm_speedupimport jsonimport tabulateimport argparseimport collectionsverbose = Falsedef _median(ary):  ary = sorted(ary)  n = len(ary)  if n%2 == 0:    return (ary[n/2] + ary[n/2+1]) / 2.0  else:    return ary[n/2]def _args():  argp = argparse.ArgumentParser(description='Perform diff on microbenchmarks')  argp.add_argument('-t', '--track',                    choices=sorted(bm_constants._INTERESTING),                    nargs='+',                    default=sorted(bm_constants._INTERESTING),                    help='Which metrics to track')  argp.add_argument('-b', '--benchmarks', nargs='+', choices=bm_constants._AVAILABLE_BENCHMARK_TESTS, default=bm_constants._AVAILABLE_BENCHMARK_TESTS)  argp.add_argument('-l', '--loops', type=int, default=20)  argp.add_argument('-n', '--new', type=str, help='New benchmark name')  argp.add_argument('-o', '--old', type=str, help='Old benchmark name')  argp.add_argument('-v', '--verbose', type=bool, help='print details of before/after')  args = argp.parse_args()  global verbose  if args.verbose: verbose = True  assert args.new  assert args.old  return argsdef _maybe_print(str):  if verbose: print strclass Benchmark:  def __init__(self):    self.samples = {      True: collections.defaultdict(list),      False: collections.defaultdict(list)    }    self.final = {}  def add_sample(self, track, data, new):    for f in track:      if f in data:        self.samples[new][f].append(float(data[f]))  def process(self, track, new_name, old_name):    for f in sorted(track):      new = self.samples[True][f]      old = self.samples[False][f]      if not new or not old: continue      mdn_diff = abs(_median(new) - _median(old))      _maybe_print('%s: %s=%r %s=%r mdn_diff=%r' %           (f, new_name, new, old_name, old, mdn_diff))      s = bm_speedup.speedup(new, old)      if abs(s) > 3 and mdn_diff > 0.5:        self.final[f] = '%+d%%' % s    return self.final.keys()  def skip(self):    return not self.final  def row(self, flds):    return [self.final[f] if f in self.final else '' for f in flds]def _read_json(filename):  try:    with open(filename) as f: return json.loads(f.read())  except ValueError, e:    return Nonedef diff(bms, loops, track, old, new):  benchmarks = collections.defaultdict(Benchmark)  for bm in bms:    for loop in range(0, loops):      js_new_ctr = _read_json('%s.counters.%s.%d.json' % (bm, new, loop))      js_new_opt = _read_json('%s.opt.%s.%d.json' % (bm, new, loop))      js_old_ctr = _read_json('%s.counters.%s.%d.json' % (bm, old, loop))      js_old_opt = _read_json('%s.opt.%s.%d.json' % (bm, old, loop))      if js_new_ctr:        for row in bm_json.expand_json(js_new_ctr, js_new_opt):          name = row['cpp_name']          if name.endswith('_mean') or name.endswith('_stddev'): continue          benchmarks[name].add_sample(track, row, True)      if js_old_ctr:        for row in bm_json.expand_json(js_old_ctr, js_old_opt):          name = row['cpp_name']          if name.endswith('_mean') or name.endswith('_stddev'): continue          benchmarks[name].add_sample(track, row, False)  really_interesting = set()  for name, bm in benchmarks.items():    _maybe_print(name)    really_interesting.update(bm.process(track, new, old))  fields = [f for f in track if f in really_interesting]  headers = ['Benchmark'] + fields  rows = []  for name in sorted(benchmarks.keys()):    if benchmarks[name].skip(): continue    rows.append([name] + benchmarks[name].row(fields))  if rows:    return tabulate.tabulate(rows, headers=headers, floatfmt='+.2f')  else:    return Noneif __name__ == '__main__':  args = _args()  print diff(args.benchmarks, args.loops, args.track, args.old, args.new)
 |