| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 | #!/usr/bin/env python2.7# Copyright 2017, Google Inc.# All rights reserved.## Redistribution and use in source and binary forms, with or without# modification, are permitted provided that the following conditions are# met:##     * Redistributions of source code must retain the above copyright# notice, this list of conditions and the following disclaimer.#     * Redistributions in binary form must reproduce the above# copyright notice, this list of conditions and the following disclaimer# in the documentation and/or other materials provided with the# distribution.#     * Neither the name of Google Inc. nor the names of its# contributors may be used to endorse or promote products derived from# this software without specific prior written permission.## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.import multiprocessingimport osimport subprocessimport sysimport argparseimport python_utils.jobset as jobsetimport python_utils.start_port_server as start_port_serverflamegraph_dir = os.path.join(os.path.expanduser('~'), 'FlameGraph')os.chdir(os.path.join(os.path.dirname(sys.argv[0]), '../..'))if not os.path.exists('reports'):  os.makedirs('reports')port_server_port = 32766start_port_server.start_port_server(port_server_port)def fnize(s):  out = ''  for c in s:    if c in '<>, /':      if len(out) and out[-1] == '_': continue      out += '_'    else:      out += c  return out# index htmlindex_html = """<html><head><title>Microbenchmark Results</title></head><body>"""def heading(name):  global index_html  index_html += "<h1>%s</h1>\n" % namedef link(txt, tgt):  global index_html  index_html += "<p><a href=\"%s\">%s</a></p>\n" % (tgt, txt)def text(txt):  global index_html  index_html += "<p><pre>%s</pre></p>\n" % txtdef collect_latency(bm_name, args):  """generate latency profiles"""  benchmarks = []  profile_analysis = []  cleanup = []  heading('Latency Profiles: %s' % bm_name)  subprocess.check_call(      ['make', bm_name,       'CONFIG=basicprof', '-j', '%d' % multiprocessing.cpu_count()])  for line in subprocess.check_output(['bins/basicprof/%s' % bm_name,                                       '--benchmark_list_tests']).splitlines():    link(line, '%s.txt' % fnize(line))    benchmarks.append(        jobset.JobSpec(['bins/basicprof/%s' % bm_name, '--benchmark_filter=^%s$' % line],                       environ={'LATENCY_TRACE': '%s.trace' % fnize(line)}))    profile_analysis.append(        jobset.JobSpec([sys.executable,                        'tools/profiling/latency_profile/profile_analyzer.py',                        '--source', '%s.trace' % fnize(line), '--fmt', 'simple',                        '--out', 'reports/%s.txt' % fnize(line)], timeout_seconds=None))    cleanup.append(jobset.JobSpec(['rm', '%s.trace' % fnize(line)]))    # periodically flush out the list of jobs: profile_analysis jobs at least    # consume upwards of five gigabytes of ram in some cases, and so analysing    # hundreds of them at once is impractical -- but we want at least some    # concurrency or the work takes too long    if len(benchmarks) >= min(4, multiprocessing.cpu_count()):      # run up to half the cpu count: each benchmark can use up to two cores      # (one for the microbenchmark, one for the data flush)      jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count()/2),                 add_env={'GRPC_TEST_PORT_SERVER': 'localhost:%d' % port_server_port})      jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count())      jobset.run(cleanup, maxjobs=multiprocessing.cpu_count())      benchmarks = []      profile_analysis = []      cleanup = []  # run the remaining benchmarks that weren't flushed  if len(benchmarks):    jobset.run(benchmarks, maxjobs=max(1, multiprocessing.cpu_count()/2),               add_env={'GRPC_TEST_PORT_SERVER': 'localhost:%d' % port_server_port})    jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count())    jobset.run(cleanup, maxjobs=multiprocessing.cpu_count())def collect_perf(bm_name, args):  """generate flamegraphs"""  heading('Flamegraphs: %s' % bm_name)  subprocess.check_call(      ['make', bm_name,       'CONFIG=mutrace', '-j', '%d' % multiprocessing.cpu_count()])  benchmarks = []  profile_analysis = []  cleanup = []  for line in subprocess.check_output(['bins/mutrace/%s' % bm_name,                                       '--benchmark_list_tests']).splitlines():    link(line, '%s.svg' % fnize(line))    benchmarks.append(        jobset.JobSpec(['perf', 'record', '-o', '%s-perf.data' % fnize(line),                        '-g', '-F', '997',                        'bins/mutrace/%s' % bm_name,                        '--benchmark_filter=^%s$' % line,                        '--benchmark_min_time=10']))    profile_analysis.append(        jobset.JobSpec(['tools/run_tests/performance/process_local_perf_flamegraphs.sh'],                       environ = {                           'PERF_BASE_NAME': fnize(line),                           'OUTPUT_DIR': 'reports',                           'OUTPUT_FILENAME': fnize(line),                       }))    cleanup.append(jobset.JobSpec(['rm', '%s-perf.data' % fnize(line)]))    cleanup.append(jobset.JobSpec(['rm', '%s-out.perf' % fnize(line)]))    # periodically flush out the list of jobs: temporary space required for this    # processing is large    if len(benchmarks) >= 20:      # run up to half the cpu count: each benchmark can use up to two cores      # (one for the microbenchmark, one for the data flush)      jobset.run(benchmarks, maxjobs=1,                 add_env={'GRPC_TEST_PORT_SERVER': 'localhost:%d' % port_server_port})      jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count())      jobset.run(cleanup, maxjobs=multiprocessing.cpu_count())      benchmarks = []      profile_analysis = []      cleanup = []  # run the remaining benchmarks that weren't flushed  if len(benchmarks):    jobset.run(benchmarks, maxjobs=1,               add_env={'GRPC_TEST_PORT_SERVER': 'localhost:%d' % port_server_port})    jobset.run(profile_analysis, maxjobs=multiprocessing.cpu_count())    jobset.run(cleanup, maxjobs=multiprocessing.cpu_count())def collect_summary(bm_name, args):  heading('Summary: %s' % bm_name)  subprocess.check_call(      ['make', bm_name,       'CONFIG=counters', '-j', '%d' % multiprocessing.cpu_count()])  text(subprocess.check_output(['bins/counters/%s' % bm_name,                                '--benchmark_out=out.json',                                '--benchmark_out_format=json']))  if args.bigquery_upload:    with open('out.csv', 'w') as f:      f.write(subprocess.check_output(['tools/profiling/microbenchmarks/bm2bq.py', 'out.json']))    subprocess.check_call(['bq', 'load', 'microbenchmarks.microbenchmarks', 'out.csv'])collectors = {  'latency': collect_latency,  'perf': collect_perf,  'summary': collect_summary,}argp = argparse.ArgumentParser(description='Collect data from microbenchmarks')argp.add_argument('-c', '--collect',                  choices=sorted(collectors.keys()),                  nargs='+',                  default=sorted(collectors.keys()),                  help='Which collectors should be run against each benchmark')argp.add_argument('-b', '--benchmarks',                  default=['bm_fullstack'],                  nargs='+',                  type=str,                  help='Which microbenchmarks should be run')argp.add_argument('--bigquery_upload',                  default=False,                  action='store_const',                  const=True,                  help='Upload results from summary collection to bigquery')args = argp.parse_args()for bm_name in args.benchmarks:  for collect in args.collect:    collectors[collect](bm_name, args)index_html += "</body>\n</html>\n"with open('reports/index.html', 'w') as f:  f.write(index_html)
 |