| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122 | 
							- #!/usr/bin/env python2.7
 
- # Copyright 2017, Google Inc.
 
- # All rights reserved.
 
- #
 
- # Redistribution and use in source and binary forms, with or without
 
- # modification, are permitted provided that the following conditions are
 
- # met:
 
- #
 
- #     * Redistributions of source code must retain the above copyright
 
- # notice, this list of conditions and the following disclaimer.
 
- #     * Redistributions in binary form must reproduce the above
 
- # copyright notice, this list of conditions and the following disclaimer
 
- # in the documentation and/or other materials provided with the
 
- # distribution.
 
- #     * Neither the name of Google Inc. nor the names of its
 
- # contributors may be used to endorse or promote products derived from
 
- # this software without specific prior written permission.
 
- #
 
- # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 
- # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 
- # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 
- # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 
- # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 
- # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 
- # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 
- # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 
- # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 
- # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 
- # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
- ### Python utility to run opt and counters benchmarks and save json output """
 
- import bm_constants
 
- import argparse
 
- import subprocess
 
- import multiprocessing
 
- import random
 
- import itertools
 
- import sys
 
- import os
 
- sys.path.append(
 
-     os.path.join(
 
-         os.path.dirname(sys.argv[0]), '..', '..', '..', 'run_tests',
 
-         'python_utils'))
 
- import jobset
 
- def _args():
 
-     argp = argparse.ArgumentParser(description='Runs microbenchmarks')
 
-     argp.add_argument(
 
-         '-b',
 
-         '--benchmarks',
 
-         nargs='+',
 
-         choices=bm_constants._AVAILABLE_BENCHMARK_TESTS,
 
-         default=bm_constants._AVAILABLE_BENCHMARK_TESTS,
 
-         help='Benchmarks to run')
 
-     argp.add_argument(
 
-         '-j',
 
-         '--jobs',
 
-         type=int,
 
-         default=multiprocessing.cpu_count(),
 
-         help='Number of CPUs to use')
 
-     argp.add_argument(
 
-         '-n',
 
-         '--name',
 
-         type=str,
 
-         help='Unique name of the build to run. Needs to match the handle passed to bm_build.py'
 
-     )
 
-     argp.add_argument(
 
-         '-r',
 
-         '--repetitions',
 
-         type=int,
 
-         default=1,
 
-         help='Number of repetitions to pass to the benchmarks')
 
-     argp.add_argument(
 
-         '-l',
 
-         '--loops',
 
-         type=int,
 
-         default=20,
 
-         help='Number of times to loops the benchmarks. More loops cuts down on noise'
 
-     )
 
-     args = argp.parse_args()
 
-     assert args.name
 
-     if args.loops < 3:
 
-         print "WARNING: This run will likely be noisy. Increase loops."
 
-     return args
 
- def _collect_bm_data(bm, cfg, name, reps, idx, loops):
 
-     jobs_list = []
 
-     for line in subprocess.check_output(['bm_diff_%s/%s/%s' % (name, cfg, bm),
 
-                                        '--benchmark_list_tests']).splitlines():
 
-         stripped_line = line.strip().replace("/","_").replace("<","_").replace(">","_")
 
-         cmd = [
 
-             'bm_diff_%s/%s/%s' % (name, cfg, bm),
 
-             '--benchmark_filter=^%s$' % line,
 
-             '--benchmark_out=%s.%s.%s.%s.%d.json' % (bm, stripped_line, cfg, name, idx),
 
-             '--benchmark_out_format=json', '--benchmark_repetitions=%d' % (reps)
 
-         ]
 
-         jobs_list.append(jobset.JobSpec(
 
-             cmd,
 
-             shortname='%s %s %s %s %d/%d' % (bm, line, cfg, name, idx + 1, loops),
 
-             verbose_success=True,
 
-             timeout_seconds=None))
 
-     return jobs_list
 
- def run(name, benchmarks, jobs, loops, reps):
 
-     jobs_list = []
 
-     for loop in range(0, loops):
 
-         for bm in benchmarks:
 
-             jobs_list += _collect_bm_data(bm, 'opt', name, reps, loop, loops)
 
-             jobs_list += _collect_bm_data(bm, 'counters', name, reps, loop, loops)
 
-     random.shuffle(jobs_list, random.SystemRandom().random)
 
-     jobset.run(jobs_list, maxjobs=jobs)
 
- if __name__ == '__main__':
 
-     args = _args()
 
-     run(args.name, args.benchmarks, args.jobs, args.loops, args.repetitions)
 
 
  |