| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 | #!/usr/bin/env python# Copyright 2015, Google Inc.# All rights reserved.## Redistribution and use in source and binary forms, with or without# modification, are permitted provided that the following conditions are# met:##     * Redistributions of source code must retain the above copyright# notice, this list of conditions and the following disclaimer.#     * Redistributions in binary form must reproduce the above# copyright notice, this list of conditions and the following disclaimer# in the documentation and/or other materials provided with the# distribution.#     * Neither the name of Google Inc. nor the names of its# contributors may be used to endorse or promote products derived from# this software without specific prior written permission.## THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."""Read GRPC basic profiles, analyze the data.Usage:  bins/basicprof/qps_smoke_test > log  cat log | tools/profile_analyzer/profile_analyzer.py"""import collectionsimport itertoolsimport mathimport reimport sys# Create a regex to parse output of the C core basic profiler,# as defined in src/core/profiling/basic_timers.c._RE_LINE = re.compile(r'GRPC_LAT_PROF ' +                      r'([0-9]+\.[0-9]+) 0x([0-9a-f]+) ([{}.!]) ([0-9]+) ' +                      r'([^ ]+) ([^ ]+) ([0-9]+)')Entry = collections.namedtuple(    'Entry',    ['time', 'thread', 'type', 'tag', 'id', 'file', 'line'])class ImportantMark(object):  def __init__(self, entry, stack):    self._entry = entry    self._pre_stack = stack    self._post_stack = list()    self._n = len(stack)  # we'll also compute times to that many closing }s  @property  def entry(self):    return self._entry  def append_post_entry(self, entry):    if self._n > 0:      self._post_stack.append(entry)      self._n -= 1  def get_deltas(self):    pre_and_post_stacks = itertools.chain(self._pre_stack, self._post_stack)    return collections.OrderedDict((stack_entry,                                   abs(self._entry.time - stack_entry.time))                                   for stack_entry in pre_and_post_stacks)def print_grouped_imark_statistics(group_key, imarks_group):  values = collections.OrderedDict()  for imark in imarks_group:    deltas = imark.get_deltas()    for relative_entry, time_delta_us in deltas.iteritems():      key = '{tag} {type} ({file}:{line})'.format(**relative_entry._asdict())      l = values.setdefault(key, list())      l.append(time_delta_us)  print group_key  print '{:>40s}: {:>15s} {:>15s} {:>15s} {:>15s}'.format(        'Relative mark', '50th p.', '90th p.', '95th p.', '99th p.')  for key, time_values in values.iteritems():    print '{:>40s}: {:>15.3f} {:>15.3f} {:>15.3f} {:>15.3f}'.format(          key, percentile(time_values, 50), percentile(time_values, 90),          percentile(time_values, 95), percentile(time_values, 99))  printdef entries():  for line in sys.stdin:    m = _RE_LINE.match(line)    if not m: continue    yield Entry(time=float(m.group(1)),                thread=m.group(2),                type=m.group(3),                tag=int(m.group(4)),                id=m.group(5),                file=m.group(6),                line=m.group(7))threads = collections.defaultdict(lambda: collections.defaultdict(list))times = collections.defaultdict(list)important_marks = collections.defaultdict(list)for entry in entries():  thread = threads[entry.thread]  if entry.type == '{':    thread[entry.tag].append(entry)  if entry.type == '!':    # Save a snapshot of the current stack inside a new ImportantMark instance.    # Get all entries with type '{' from "thread".    stack = [e for entries_for_tag in thread.values()               for e in entries_for_tag if e.type == '{']    imark_group_key = '{tag}@{file}:{line}'.format(**entry._asdict())    important_marks[imark_group_key].append(ImportantMark(entry, stack))  elif entry.type == '}':    last = thread[entry.tag].pop()    times[entry.tag].append(entry.time - last.time)    # Update accounting for important marks.    for imarks_group in important_marks.itervalues():      for imark in imarks_group:        imark.append_post_entry(entry)def percentile(vals, percent):  """ Calculates the interpolated percentile given a (possibly unsorted sequence)  and a percent (in the usual 0-100 range)."""  assert vals, "Empty input sequence."  vals = sorted(vals)  percent /= 100.0  k = (len(vals)-1) * percent  f = math.floor(k)  c = math.ceil(k)  if f == c:      return vals[int(k)]  # else, interpolate  d0 = vals[int(f)] * (c-k)  d1 = vals[int(c)] * (k-f)  return d0 + d1print 'tag 50%/90%/95%/99% us'for tag in sorted(times.keys()):  vals = times[tag]  print '%d %.2f/%.2f/%.2f/%.2f' % (tag,                                    percentile(vals, 50),                                    percentile(vals, 90),                                    percentile(vals, 95),                                    percentile(vals, 99))printprint 'Important marks:'print '================'for group_key, imarks_group in important_marks.iteritems():  print_grouped_imark_statistics(group_key, imarks_group)
 |