| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574 | /* * * Copyright 2015 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * *     http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */#ifndef TEST_QPS_CLIENT_H#define TEST_QPS_CLIENT_H#include <stdlib.h>#include <condition_variable>#include <mutex>#include <unordered_map>#include <vector>#include <grpc/support/log.h>#include <grpc/support/time.h>#include <grpcpp/channel.h>#include <grpcpp/support/byte_buffer.h>#include <grpcpp/support/channel_arguments.h>#include <grpcpp/support/slice.h>#include "src/proto/grpc/testing/benchmark_service.grpc.pb.h"#include "src/proto/grpc/testing/payloads.pb.h"#include "src/core/lib/gpr/env.h"#include "src/cpp/util/core_stats.h"#include "test/cpp/qps/histogram.h"#include "test/cpp/qps/interarrival.h"#include "test/cpp/qps/qps_worker.h"#include "test/cpp/qps/server.h"#include "test/cpp/qps/usage_timer.h"#include "test/cpp/util/create_test_channel.h"#include "test/cpp/util/test_credentials_provider.h"#define INPROC_NAME_PREFIX "qpsinproc:"namespace grpc {namespace testing {template <class RequestType>class ClientRequestCreator { public:  ClientRequestCreator(RequestType* req, const PayloadConfig&) {    // this template must be specialized    // fail with an assertion rather than a compile-time    // check since these only happen at the beginning anyway    GPR_ASSERT(false);  }};template <>class ClientRequestCreator<SimpleRequest> { public:  ClientRequestCreator(SimpleRequest* req,                       const PayloadConfig& payload_config) {    if (payload_config.has_bytebuf_params()) {      GPR_ASSERT(false);  // not appropriate for this specialization    } else if (payload_config.has_simple_params()) {      req->set_response_type(grpc::testing::PayloadType::COMPRESSABLE);      req->set_response_size(payload_config.simple_params().resp_size());      req->mutable_payload()->set_type(          grpc::testing::PayloadType::COMPRESSABLE);      int size = payload_config.simple_params().req_size();      std::unique_ptr<char[]> body(new char[size]);      req->mutable_payload()->set_body(body.get(), size);    } else if (payload_config.has_complex_params()) {      GPR_ASSERT(false);  // not appropriate for this specialization    } else {      // default should be simple proto without payloads      req->set_response_type(grpc::testing::PayloadType::COMPRESSABLE);      req->set_response_size(0);      req->mutable_payload()->set_type(          grpc::testing::PayloadType::COMPRESSABLE);    }  }};template <>class ClientRequestCreator<ByteBuffer> { public:  ClientRequestCreator(ByteBuffer* req, const PayloadConfig& payload_config) {    if (payload_config.has_bytebuf_params()) {      size_t req_sz =          static_cast<size_t>(payload_config.bytebuf_params().req_size());      std::unique_ptr<char[]> buf(new char[req_sz]);      memset(buf.get(), 0, req_sz);      Slice slice(buf.get(), req_sz);      *req = ByteBuffer(&slice, 1);    } else {      GPR_ASSERT(false);  // not appropriate for this specialization    }  }};class HistogramEntry final { public:  HistogramEntry() : value_used_(false), status_used_(false) {}  bool value_used() const { return value_used_; }  double value() const { return value_; }  void set_value(double v) {    value_used_ = true;    value_ = v;  }  bool status_used() const { return status_used_; }  int status() const { return status_; }  void set_status(int status) {    status_used_ = true;    status_ = status;  } private:  bool value_used_;  double value_;  bool status_used_;  int status_;};typedef std::unordered_map<int, int64_t> StatusHistogram;inline void MergeStatusHistogram(const StatusHistogram& from,                                 StatusHistogram* to) {  for (StatusHistogram::const_iterator it = from.begin(); it != from.end();       ++it) {    (*to)[it->first] += it->second;  }}class Client { public:  Client()      : timer_(new UsageTimer),        interarrival_timer_(),        started_requests_(false),        last_reset_poll_count_(0) {    gpr_event_init(&start_requests_);  }  virtual ~Client() {}  ClientStats Mark(bool reset) {    Histogram latencies;    StatusHistogram statuses;    UsageTimer::Result timer_result;    MaybeStartRequests();    int cur_poll_count = GetPollCount();    int poll_count = cur_poll_count - last_reset_poll_count_;    if (reset) {      std::vector<Histogram> to_merge(threads_.size());      std::vector<StatusHistogram> to_merge_status(threads_.size());      for (size_t i = 0; i < threads_.size(); i++) {        threads_[i]->BeginSwap(&to_merge[i], &to_merge_status[i]);      }      std::unique_ptr<UsageTimer> timer(new UsageTimer);      timer_.swap(timer);      for (size_t i = 0; i < threads_.size(); i++) {        latencies.Merge(to_merge[i]);        MergeStatusHistogram(to_merge_status[i], &statuses);      }      timer_result = timer->Mark();      last_reset_poll_count_ = cur_poll_count;    } else {      // merge snapshots of each thread histogram      for (size_t i = 0; i < threads_.size(); i++) {        threads_[i]->MergeStatsInto(&latencies, &statuses);      }      timer_result = timer_->Mark();    }    // Print the median latency per interval for one thread.    // If the number of warmup seconds is x, then the first x + 1 numbers in the    // vector are from the warmup period and should be discarded.    if (median_latency_collection_interval_seconds_ > 0) {      std::vector<double> medians_per_interval =          threads_[0]->GetMedianPerIntervalList();      gpr_log(GPR_INFO, "Num threads: %ld", threads_.size());      gpr_log(GPR_INFO, "Number of medians: %ld", medians_per_interval.size());      for (size_t j = 0; j < medians_per_interval.size(); j++) {        gpr_log(GPR_INFO, "%f", medians_per_interval[j]);      }    }    grpc_stats_data core_stats;    grpc_stats_collect(&core_stats);    ClientStats stats;    latencies.FillProto(stats.mutable_latencies());    for (StatusHistogram::const_iterator it = statuses.begin();         it != statuses.end(); ++it) {      RequestResultCount* rrc = stats.add_request_results();      rrc->set_status_code(it->first);      rrc->set_count(it->second);    }    stats.set_time_elapsed(timer_result.wall);    stats.set_time_system(timer_result.system);    stats.set_time_user(timer_result.user);    stats.set_cq_poll_count(poll_count);    CoreStatsToProto(core_stats, stats.mutable_core_stats());    return stats;  }  // Must call AwaitThreadsCompletion before destructor to avoid a race  // between destructor and invocation of virtual ThreadFunc  void AwaitThreadsCompletion() {    gpr_atm_rel_store(&thread_pool_done_, static_cast<gpr_atm>(true));    DestroyMultithreading();    std::unique_lock<std::mutex> g(thread_completion_mu_);    while (threads_remaining_ != 0) {      threads_complete_.wait(g);    }  }  // Returns the interval (in seconds) between collecting latency medians. If 0,  // no periodic median latencies will be collected.  double GetLatencyCollectionIntervalInSeconds() {    return median_latency_collection_interval_seconds_;  }  virtual int GetPollCount() {    // For sync client.    return 0;  }  bool IsClosedLoop() { return closed_loop_; }  gpr_timespec NextIssueTime(int thread_idx) {    const gpr_timespec result = next_time_[thread_idx];    next_time_[thread_idx] =        gpr_time_add(next_time_[thread_idx],                     gpr_time_from_nanos(interarrival_timer_.next(thread_idx),                                         GPR_TIMESPAN));    return result;  }  bool ThreadCompleted() {    return static_cast<bool>(gpr_atm_acq_load(&thread_pool_done_));  }  class Thread {   public:    Thread(Client* client, size_t idx)        : client_(client), idx_(idx), impl_(&Thread::ThreadFunc, this) {}    ~Thread() { impl_.join(); }    void BeginSwap(Histogram* n, StatusHistogram* s) {      std::lock_guard<std::mutex> g(mu_);      n->Swap(&histogram_);      s->swap(statuses_);    }    void MergeStatsInto(Histogram* hist, StatusHistogram* s) {      std::unique_lock<std::mutex> g(mu_);      hist->Merge(histogram_);      MergeStatusHistogram(statuses_, s);    }    std::vector<double> GetMedianPerIntervalList() {      return medians_each_interval_list_;    }    void UpdateHistogram(HistogramEntry* entry) {      std::lock_guard<std::mutex> g(mu_);      if (entry->value_used()) {        histogram_.Add(entry->value());        if (client_->GetLatencyCollectionIntervalInSeconds() > 0) {          histogram_per_interval_.Add(entry->value());          double now = UsageTimer::Now();          if ((now - interval_start_time_) >=              client_->GetLatencyCollectionIntervalInSeconds()) {            // Record the median latency of requests from the last interval.            // Divide by 1e3 to get microseconds.            medians_each_interval_list_.push_back(                histogram_per_interval_.Percentile(50) / 1e3);            histogram_per_interval_.Reset();            interval_start_time_ = now;          }        }      }      if (entry->status_used()) {        statuses_[entry->status()]++;      }    }   private:    Thread(const Thread&);    Thread& operator=(const Thread&);    void ThreadFunc() {      int wait_loop = 0;      while (!gpr_event_wait(          &client_->start_requests_,          gpr_time_add(gpr_now(GPR_CLOCK_REALTIME),                       gpr_time_from_seconds(20, GPR_TIMESPAN)))) {        gpr_log(GPR_INFO, "%" PRIdPTR ": Waiting for benchmark to start (%d)",                idx_, wait_loop);        wait_loop++;      }      client_->ThreadFunc(idx_, this);      client_->CompleteThread();    }    std::mutex mu_;    Histogram histogram_;    StatusHistogram statuses_;    Client* client_;    const size_t idx_;    std::thread impl_;    // The following are used only if    // median_latency_collection_interval_seconds_ is greater than 0    Histogram histogram_per_interval_;    std::vector<double> medians_each_interval_list_;    double interval_start_time_;  }; protected:  bool closed_loop_;  gpr_atm thread_pool_done_;  double median_latency_collection_interval_seconds_;  // In seconds  void StartThreads(size_t num_threads) {    gpr_atm_rel_store(&thread_pool_done_, static_cast<gpr_atm>(false));    threads_remaining_ = num_threads;    for (size_t i = 0; i < num_threads; i++) {      threads_.emplace_back(new Thread(this, i));    }  }  void EndThreads() {    MaybeStartRequests();    threads_.clear();  }  virtual void DestroyMultithreading() = 0;  void SetupLoadTest(const ClientConfig& config, size_t num_threads) {    // Set up the load distribution based on the number of threads    const auto& load = config.load_params();    std::unique_ptr<RandomDistInterface> random_dist;    switch (load.load_case()) {      case LoadParams::kClosedLoop:        // Closed-loop doesn't use random dist at all        break;      case LoadParams::kPoisson:        random_dist.reset(            new ExpDist(load.poisson().offered_load() / num_threads));        break;      default:        GPR_ASSERT(false);    }    // Set closed_loop_ based on whether or not random_dist is set    if (!random_dist) {      closed_loop_ = true;    } else {      closed_loop_ = false;      // set up interarrival timer according to random dist      interarrival_timer_.init(*random_dist, num_threads);      const auto now = gpr_now(GPR_CLOCK_MONOTONIC);      for (size_t i = 0; i < num_threads; i++) {        next_time_.push_back(gpr_time_add(            now,            gpr_time_from_nanos(interarrival_timer_.next(i), GPR_TIMESPAN)));      }    }  }  std::function<gpr_timespec()> NextIssuer(int thread_idx) {    return closed_loop_ ? std::function<gpr_timespec()>()                        : std::bind(&Client::NextIssueTime, this, thread_idx);  }  virtual void ThreadFunc(size_t thread_idx, Client::Thread* t) = 0;  std::vector<std::unique_ptr<Thread>> threads_;  std::unique_ptr<UsageTimer> timer_;  InterarrivalTimer interarrival_timer_;  std::vector<gpr_timespec> next_time_;  std::mutex thread_completion_mu_;  size_t threads_remaining_;  std::condition_variable threads_complete_;  gpr_event start_requests_;  bool started_requests_;  int last_reset_poll_count_;  void MaybeStartRequests() {    if (!started_requests_) {      started_requests_ = true;      gpr_event_set(&start_requests_, (void*)1);    }  }  void CompleteThread() {    std::lock_guard<std::mutex> g(thread_completion_mu_);    threads_remaining_--;    if (threads_remaining_ == 0) {      threads_complete_.notify_all();    }  }};template <class StubType, class RequestType>class ClientImpl : public Client { public:  ClientImpl(const ClientConfig& config,             std::function<std::unique_ptr<StubType>(std::shared_ptr<Channel>)>                 create_stub)      : cores_(gpr_cpu_num_cores()), create_stub_(create_stub) {    for (int i = 0; i < config.client_channels(); i++) {      channels_.emplace_back(          config.server_targets(i % config.server_targets_size()), config,          create_stub_, i);    }    WaitForChannelsToConnect();    median_latency_collection_interval_seconds_ =        config.median_latency_collection_interval_millis() / 1e3;    ClientRequestCreator<RequestType> create_req(&request_,                                                 config.payload_config());  }  virtual ~ClientImpl() {}  const RequestType* request() { return &request_; }  void WaitForChannelsToConnect() {    int connect_deadline_seconds = 10;    /* Allow optionally overriding connect_deadline in order     * to deal with benchmark environments in which the server     * can take a long time to become ready. */    char* channel_connect_timeout_str =        gpr_getenv("QPS_WORKER_CHANNEL_CONNECT_TIMEOUT");    if (channel_connect_timeout_str != nullptr &&        strcmp(channel_connect_timeout_str, "") != 0) {      connect_deadline_seconds = atoi(channel_connect_timeout_str);    }    gpr_log(GPR_INFO,            "Waiting for up to %d seconds for all channels to connect",            connect_deadline_seconds);    gpr_free(channel_connect_timeout_str);    gpr_timespec connect_deadline = gpr_time_add(        gpr_now(GPR_CLOCK_REALTIME),        gpr_time_from_seconds(connect_deadline_seconds, GPR_TIMESPAN));    CompletionQueue cq;    size_t num_remaining = 0;    for (auto& c : channels_) {      if (!c.is_inproc()) {        Channel* channel = c.get_channel();        grpc_connectivity_state last_observed = channel->GetState(true);        if (last_observed == GRPC_CHANNEL_READY) {          gpr_log(GPR_INFO, "Channel %p connected!", channel);        } else {          num_remaining++;          channel->NotifyOnStateChange(last_observed, connect_deadline, &cq,                                       channel);        }      }    }    while (num_remaining > 0) {      bool ok = false;      void* tag = nullptr;      cq.Next(&tag, &ok);      Channel* channel = static_cast<Channel*>(tag);      if (!ok) {        gpr_log(GPR_ERROR, "Channel %p failed to connect within the deadline",                channel);        abort();      } else {        grpc_connectivity_state last_observed = channel->GetState(true);        if (last_observed == GRPC_CHANNEL_READY) {          gpr_log(GPR_INFO, "Channel %p connected!", channel);          num_remaining--;        } else {          channel->NotifyOnStateChange(last_observed, connect_deadline, &cq,                                       channel);        }      }    }  } protected:  const int cores_;  RequestType request_;  class ClientChannelInfo {   public:    ClientChannelInfo(        const grpc::string& target, const ClientConfig& config,        std::function<std::unique_ptr<StubType>(std::shared_ptr<Channel>)>            create_stub,        int shard) {      ChannelArguments args;      args.SetInt("shard_to_ensure_no_subchannel_merges", shard);      set_channel_args(config, &args);      grpc::string type;      if (config.has_security_params() &&          config.security_params().cred_type().empty()) {        type = kTlsCredentialsType;      } else {        type = config.security_params().cred_type();      }      grpc::string inproc_pfx(INPROC_NAME_PREFIX);      if (target.find(inproc_pfx) != 0) {        channel_ = CreateTestChannel(            target, type, config.security_params().server_host_override(),            !config.security_params().use_test_ca(),            std::shared_ptr<CallCredentials>(), args);        gpr_log(GPR_INFO, "Connecting to %s", target.c_str());        is_inproc_ = false;      } else {        grpc::string tgt = target;        tgt.erase(0, inproc_pfx.length());        int srv_num = std::stoi(tgt);        channel_ = (*g_inproc_servers)[srv_num]->InProcessChannel(args);        is_inproc_ = true;      }      stub_ = create_stub(channel_);    }    Channel* get_channel() { return channel_.get(); }    StubType* get_stub() { return stub_.get(); }    bool is_inproc() { return is_inproc_; }   private:    void set_channel_args(const ClientConfig& config, ChannelArguments* args) {      for (const auto& channel_arg : config.channel_args()) {        if (channel_arg.value_case() == ChannelArg::kStrValue) {          args->SetString(channel_arg.name(), channel_arg.str_value());        } else if (channel_arg.value_case() == ChannelArg::kIntValue) {          args->SetInt(channel_arg.name(), channel_arg.int_value());        } else {          gpr_log(GPR_ERROR, "Empty channel arg value.");        }      }    }    std::shared_ptr<Channel> channel_;    std::unique_ptr<StubType> stub_;    bool is_inproc_;  };  std::vector<ClientChannelInfo> channels_;  std::function<std::unique_ptr<StubType>(const std::shared_ptr<Channel>&)>      create_stub_;};std::unique_ptr<Client> CreateSynchronousClient(const ClientConfig& args);std::unique_ptr<Client> CreateAsyncClient(const ClientConfig& args);std::unique_ptr<Client> CreateCallbackClient(const ClientConfig& args);std::unique_ptr<Client> CreateGenericAsyncStreamingClient(    const ClientConfig& args);}  // namespace testing}  // namespace grpc#endif
 |