| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384 | /* * * Copyright 2020 gRPC authors. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * *     http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */#include <atomic>#include <chrono>#include <condition_variable>#include <map>#include <mutex>#include <set>#include <sstream>#include <string>#include <thread>#include <vector>#include "absl/strings/str_split.h"#include <gflags/gflags.h>#include <grpcpp/grpcpp.h>#include <grpcpp/server.h>#include <grpcpp/server_builder.h>#include <grpcpp/server_context.h>#include "src/core/lib/gpr/env.h"#include "src/proto/grpc/testing/empty.pb.h"#include "src/proto/grpc/testing/messages.pb.h"#include "src/proto/grpc/testing/test.grpc.pb.h"#include "test/core/util/test_config.h"#include "test/cpp/util/test_config.h"DEFINE_bool(fail_on_failed_rpc, false,            "Fail client if any RPCs fail after first successful RPC.");DEFINE_int32(num_channels, 1, "Number of channels.");DEFINE_bool(print_response, false, "Write RPC response to stdout.");DEFINE_int32(qps, 1, "Qps per channel.");DEFINE_int32(rpc_timeout_sec, 30, "Per RPC timeout seconds.");DEFINE_string(server, "localhost:50051", "Address of server.");DEFINE_int32(stats_port, 50052,             "Port to expose peer distribution stats service.");DEFINE_string(rpc, "UnaryCall", "a comma separated list of rpc methods.");DEFINE_string(metadata, "", "metadata to send with the RPC.");using grpc::Channel;using grpc::ClientAsyncResponseReader;using grpc::ClientContext;using grpc::CompletionQueue;using grpc::Server;using grpc::ServerBuilder;using grpc::ServerContext;using grpc::ServerCredentials;using grpc::ServerReader;using grpc::ServerReaderWriter;using grpc::ServerWriter;using grpc::Status;using grpc::testing::Empty;using grpc::testing::LoadBalancerStatsRequest;using grpc::testing::LoadBalancerStatsResponse;using grpc::testing::LoadBalancerStatsService;using grpc::testing::SimpleRequest;using grpc::testing::SimpleResponse;using grpc::testing::TestService;class XdsStatsWatcher;// Unique ID for each outgoing RPCint global_request_id;// Stores a set of watchers that should be notified upon outgoing RPC completionstd::set<XdsStatsWatcher*> watchers;// Mutex for global_request_id and watchersstd::mutex mu;// Whether at least one RPC has succeeded, indicating xDS resolution completed.std::atomic<bool> one_rpc_succeeded(false);/** Records the remote peer distribution for a given range of RPCs. */class XdsStatsWatcher { public:  XdsStatsWatcher(int start_id, int end_id)      : start_id_(start_id), end_id_(end_id), rpcs_needed_(end_id - start_id) {}  void RpcCompleted(int request_id, const std::string& rpc_method,                    const std::string& peer) {    if (start_id_ <= request_id && request_id < end_id_) {      {        std::lock_guard<std::mutex> lk(m_);        if (peer.empty()) {          no_remote_peer_++;        } else {          rpcs_by_peer_[peer]++;          rpcs_by_method_[rpc_method][peer]++;        }        rpcs_needed_--;      }      cv_.notify_one();    }  }  void WaitForRpcStatsResponse(LoadBalancerStatsResponse* response,                               int timeout_sec) {    {      std::unique_lock<std::mutex> lk(m_);      cv_.wait_for(lk, std::chrono::seconds(timeout_sec),                   [this] { return rpcs_needed_ == 0; });      response->mutable_rpcs_by_peer()->insert(rpcs_by_peer_.begin(),                                               rpcs_by_peer_.end());      auto& response_rpcs_by_method = *response->mutable_rpcs_by_method();      for (const auto& rpc_by_method : rpcs_by_method_) {        auto& response_rpc_by_method =            response_rpcs_by_method[rpc_by_method.first];        auto& response_rpcs_by_peer =            *response_rpc_by_method.mutable_rpcs_by_peer();        for (const auto& rpc_by_peer : rpc_by_method.second) {          auto& response_rpc_by_peer = response_rpcs_by_peer[rpc_by_peer.first];          response_rpc_by_peer = rpc_by_peer.second;        }      }      response->set_num_failures(no_remote_peer_ + rpcs_needed_);    }  } private:  int start_id_;  int end_id_;  int rpcs_needed_;  int no_remote_peer_ = 0;  // A map of stats keyed by peer name.  std::map<std::string, int> rpcs_by_peer_;  // A two-level map of stats keyed at top level by RPC method and second level  // by peer name.  std::map<std::string, std::map<std::string, int>> rpcs_by_method_;  std::mutex m_;  std::condition_variable cv_;};class TestClient { public:  TestClient(const std::shared_ptr<Channel>& channel)      : stub_(TestService::NewStub(channel)) {}  void AsyncUnaryCall(      std::vector<std::pair<std::string, std::string>> metadata) {    SimpleResponse response;    int saved_request_id;    {      std::lock_guard<std::mutex> lk(mu);      saved_request_id = ++global_request_id;    }    std::chrono::system_clock::time_point deadline =        std::chrono::system_clock::now() +        std::chrono::seconds(FLAGS_rpc_timeout_sec);    AsyncClientCall* call = new AsyncClientCall;    call->context.set_deadline(deadline);    for (const auto& data : metadata) {      call->context.AddMetadata(data.first, data.second);    }    call->saved_request_id = saved_request_id;    call->rpc_method = "UnaryCall";    call->simple_response_reader = stub_->PrepareAsyncUnaryCall(        &call->context, SimpleRequest::default_instance(), &cq_);    call->simple_response_reader->StartCall();    call->simple_response_reader->Finish(&call->simple_response, &call->status,                                         (void*)call);  }  void AsyncEmptyCall(      std::vector<std::pair<std::string, std::string>> metadata) {    Empty response;    int saved_request_id;    {      std::lock_guard<std::mutex> lk(mu);      saved_request_id = ++global_request_id;    }    std::chrono::system_clock::time_point deadline =        std::chrono::system_clock::now() +        std::chrono::seconds(FLAGS_rpc_timeout_sec);    AsyncClientCall* call = new AsyncClientCall;    call->context.set_deadline(deadline);    for (const auto& data : metadata) {      call->context.AddMetadata(data.first, data.second);    }    call->saved_request_id = saved_request_id;    call->rpc_method = "EmptyCall";    call->empty_response_reader = stub_->PrepareAsyncEmptyCall(        &call->context, Empty::default_instance(), &cq_);    call->empty_response_reader->StartCall();    call->empty_response_reader->Finish(&call->empty_response, &call->status,                                        (void*)call);  }  void AsyncCompleteRpc() {    void* got_tag;    bool ok = false;    while (cq_.Next(&got_tag, &ok)) {      AsyncClientCall* call = static_cast<AsyncClientCall*>(got_tag);      GPR_ASSERT(ok);      {        std::lock_guard<std::mutex> lk(mu);        auto server_initial_metadata = call->context.GetServerInitialMetadata();        auto metadata_hostname =            call->context.GetServerInitialMetadata().find("hostname");        std::string hostname =            metadata_hostname != call->context.GetServerInitialMetadata().end()                ? std::string(metadata_hostname->second.data(),                              metadata_hostname->second.length())                : call->simple_response.hostname();        for (auto watcher : watchers) {          watcher->RpcCompleted(call->saved_request_id, call->rpc_method,                                hostname);        }      }      if (!call->status.ok()) {        if (FLAGS_print_response || FLAGS_fail_on_failed_rpc) {          std::cout << "RPC failed: " << call->status.error_code() << ": "                    << call->status.error_message() << std::endl;        }        if (FLAGS_fail_on_failed_rpc && one_rpc_succeeded.load()) {          abort();        }      } else {        if (FLAGS_print_response) {          auto metadata_hostname =              call->context.GetServerInitialMetadata().find("hostname");          std::string hostname =              metadata_hostname !=                      call->context.GetServerInitialMetadata().end()                  ? std::string(metadata_hostname->second.data(),                                metadata_hostname->second.length())                  : call->simple_response.hostname();          std::cout << "Greeting: Hello world, this is " << hostname                    << ", from " << call->context.peer() << std::endl;        }        one_rpc_succeeded = true;      }      delete call;    }  } private:  struct AsyncClientCall {    Empty empty_response;    SimpleResponse simple_response;    ClientContext context;    Status status;    int saved_request_id;    std::string rpc_method;    std::unique_ptr<ClientAsyncResponseReader<Empty>> empty_response_reader;    std::unique_ptr<ClientAsyncResponseReader<SimpleResponse>>        simple_response_reader;  };  std::unique_ptr<TestService::Stub> stub_;  CompletionQueue cq_;};class LoadBalancerStatsServiceImpl : public LoadBalancerStatsService::Service { public:  Status GetClientStats(ServerContext* context,                        const LoadBalancerStatsRequest* request,                        LoadBalancerStatsResponse* response) {    int start_id;    int end_id;    XdsStatsWatcher* watcher;    {      std::lock_guard<std::mutex> lk(mu);      start_id = global_request_id + 1;      end_id = start_id + request->num_rpcs();      watcher = new XdsStatsWatcher(start_id, end_id);      watchers.insert(watcher);    }    watcher->WaitForRpcStatsResponse(response, request->timeout_sec());    {      std::lock_guard<std::mutex> lk(mu);      watchers.erase(watcher);    }    delete watcher;    return Status::OK;  }};void RunTestLoop(std::chrono::duration<double> duration_per_query) {  std::vector<absl::string_view> rpc_methods =      absl::StrSplit(FLAGS_rpc, ',', absl::SkipEmpty());  // Store Metadata like  // "EmptyCall:key1:value1,UnaryCall:key1:value1,UnaryCall:key2:value2" into a  // map where the key is the RPC method and value is a vector of key:value  // pairs. {EmptyCall, [{key1,value1}],  //  UnaryCall, [{key1,value1}, {key2,value2}]}  std::vector<absl::string_view> rpc_metadata =      absl::StrSplit(FLAGS_metadata, ',', absl::SkipEmpty());  std::map<std::string, std::vector<std::pair<std::string, std::string>>>      metadata_map;  for (auto& data : rpc_metadata) {    std::vector<absl::string_view> metadata =        absl::StrSplit(data, ':', absl::SkipEmpty());    GPR_ASSERT(metadata.size() == 3);    metadata_map[std::string(metadata[0])].push_back(        {std::string(metadata[1]), std::string(metadata[2])});  }  TestClient client(      grpc::CreateChannel(FLAGS_server, grpc::InsecureChannelCredentials()));  std::chrono::time_point<std::chrono::system_clock> start =      std::chrono::system_clock::now();  std::chrono::duration<double> elapsed;  std::thread thread = std::thread(&TestClient::AsyncCompleteRpc, &client);  while (true) {    for (const absl::string_view& rpc_method : rpc_methods) {      elapsed = std::chrono::system_clock::now() - start;      if (elapsed > duration_per_query) {        start = std::chrono::system_clock::now();        auto metadata_iter = metadata_map.find(std::string(rpc_method));        if (rpc_method == "EmptyCall") {          client.AsyncEmptyCall(              metadata_iter != metadata_map.end()                  ? metadata_iter->second                  : std::vector<std::pair<std::string, std::string>>());        } else {          client.AsyncUnaryCall(              metadata_iter != metadata_map.end()                  ? metadata_iter->second                  : std::vector<std::pair<std::string, std::string>>());        }      }    }  }  thread.join();}void RunServer(const int port) {  GPR_ASSERT(port != 0);  std::ostringstream server_address;  server_address << "0.0.0.0:" << port;  LoadBalancerStatsServiceImpl service;  ServerBuilder builder;  builder.RegisterService(&service);  builder.AddListeningPort(server_address.str(),                           grpc::InsecureServerCredentials());  std::unique_ptr<Server> server(builder.BuildAndStart());  gpr_log(GPR_INFO, "Stats server listening on %s",          server_address.str().c_str());  server->Wait();}int main(int argc, char** argv) {  grpc::testing::TestEnvironment env(argc, argv);  grpc::testing::InitTest(&argc, &argv, true);  std::chrono::duration<double> duration_per_query =      std::chrono::nanoseconds(std::chrono::seconds(1)) / FLAGS_qps;  std::vector<std::thread> test_threads;  test_threads.reserve(FLAGS_num_channels);  for (int i = 0; i < FLAGS_num_channels; i++) {    test_threads.emplace_back(std::thread(&RunTestLoop, duration_per_query));  }  RunServer(FLAGS_stats_port);  for (auto it = test_threads.begin(); it != test_threads.end(); it++) {    it->join();  }  return 0;}
 |