| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340 | // Ceres Solver - A fast non-linear least squares minimizer// Copyright 2015 Google Inc. All rights reserved.// http://ceres-solver.org///// Redistribution and use in source and binary forms, with or without// modification, are permitted provided that the following conditions are met://// * Redistributions of source code must retain the above copyright notice,//   this list of conditions and the following disclaimer.// * Redistributions in binary form must reproduce the above copyright notice,//   this list of conditions and the following disclaimer in the documentation//   and/or other materials provided with the distribution.// * Neither the name of Google Inc. nor the names of its contributors may be//   used to endorse or promote products derived from this software without//   specific prior written permission.//// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE// POSSIBILITY OF SUCH DAMAGE.//// Author: sameeragarwal@google.com (Sameer Agarwal)#include "ceres/visibility_based_preconditioner.h"#include <memory>#include "Eigen/Dense"#include "ceres/block_random_access_dense_matrix.h"#include "ceres/block_random_access_sparse_matrix.h"#include "ceres/block_sparse_matrix.h"#include "ceres/casts.h"#include "ceres/file.h"#include "ceres/internal/eigen.h"#include "ceres/linear_least_squares_problems.h"#include "ceres/schur_eliminator.h"#include "ceres/stringprintf.h"#include "ceres/test_util.h"#include "ceres/types.h"#include "glog/logging.h"#include "gtest/gtest.h"namespace ceres {namespace internal {// TODO(sameeragarwal): Re-enable this test once serialization is// working again.// using testing::AssertionResult;// using testing::AssertionSuccess;// using testing::AssertionFailure;// static const double kTolerance = 1e-12;// class VisibilityBasedPreconditionerTest : public ::testing::Test {//  public://   static const int kCameraSize = 9;//  protected://   void SetUp() {//     string input_file = TestFileAbsolutePath("problem-6-1384-000.lsqp");//     std::unique_ptr<LinearLeastSquaresProblem> problem(//         CHECK_NOTNULL(CreateLinearLeastSquaresProblemFromFile(input_file)));//     A_.reset(down_cast<BlockSparseMatrix*>(problem->A.release()));//     b_.reset(problem->b.release());//     D_.reset(problem->D.release());//     const CompressedRowBlockStructure* bs =//         CHECK_NOTNULL(A_->block_structure());//     const int num_col_blocks = bs->cols.size();//     num_cols_ = A_->num_cols();//     num_rows_ = A_->num_rows();//     num_eliminate_blocks_ = problem->num_eliminate_blocks;//     num_camera_blocks_ = num_col_blocks - num_eliminate_blocks_;//     options_.elimination_groups.push_back(num_eliminate_blocks_);//     options_.elimination_groups.push_back(//         A_->block_structure()->cols.size() - num_eliminate_blocks_);//     vector<int> blocks(num_col_blocks - num_eliminate_blocks_, 0);//     for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {//       blocks[i - num_eliminate_blocks_] = bs->cols[i].size;//     }//     // The input matrix is a real jacobian and fairly poorly//     // conditioned. Setting D to a large constant makes the normal//     // equations better conditioned and makes the tests below better//     // conditioned.//     VectorRef(D_.get(), num_cols_).setConstant(10.0);//     schur_complement_.reset(new BlockRandomAccessDenseMatrix(blocks));//     Vector rhs(schur_complement_->num_rows());//     std::unique_ptr<SchurEliminatorBase> eliminator;//     LinearSolver::Options eliminator_options;//     eliminator_options.elimination_groups = options_.elimination_groups;//     eliminator_options.num_threads = options_.num_threads;//     eliminator.reset(SchurEliminatorBase::Create(eliminator_options));//     eliminator->Init(num_eliminate_blocks_, bs);//     eliminator->Eliminate(A_.get(), b_.get(), D_.get(),//                           schur_complement_.get(), rhs.data());//   }//   AssertionResult IsSparsityStructureValid() {//     preconditioner_->InitStorage(*A_->block_structure());//     const std::unordered_set<pair<int, int>, pair_hash>& cluster_pairs =//     get_cluster_pairs(); const vector<int>& cluster_membership =//     get_cluster_membership();//     for (int i = 0; i < num_camera_blocks_; ++i) {//       for (int j = i; j < num_camera_blocks_; ++j) {//         if (cluster_pairs.count(make_pair(cluster_membership[i],//                                           cluster_membership[j]))) {//           if (!IsBlockPairInPreconditioner(i, j)) {//             return AssertionFailure()//                 << "block pair (" << i << "," << j << "missing";//           }//         } else {//           if (IsBlockPairInPreconditioner(i, j)) {//             return AssertionFailure()//                << "block pair (" << i << "," << j << "should not be present";//           }//         }//       }//     }//     return AssertionSuccess();//   }//   AssertionResult PreconditionerValuesMatch() {//     preconditioner_->Update(*A_, D_.get());//     const std::unordered_set<pair<int, int>, pair_hash>& cluster_pairs =//     get_cluster_pairs(); const BlockRandomAccessSparseMatrix* m = get_m();//     Matrix preconditioner_matrix;//     m->matrix()->ToDenseMatrix(&preconditioner_matrix);//     ConstMatrixRef full_schur_complement(schur_complement_->values(),//                                          m->num_rows(),//                                          m->num_rows());//     const int num_clusters = get_num_clusters();//     const int kDiagonalBlockSize =//         kCameraSize * num_camera_blocks_ / num_clusters;//     for (int i = 0; i < num_clusters; ++i) {//       for (int j = i; j < num_clusters; ++j) {//         double diff = 0.0;//         if (cluster_pairs.count(make_pair(i, j))) {//           diff =//               (preconditioner_matrix.block(kDiagonalBlockSize * i,//                                            kDiagonalBlockSize * j,//                                            kDiagonalBlockSize,//                                            kDiagonalBlockSize) -//                full_schur_complement.block(kDiagonalBlockSize * i,//                                            kDiagonalBlockSize * j,//                                            kDiagonalBlockSize,//                                            kDiagonalBlockSize)).norm();//         } else {//           diff = preconditioner_matrix.block(kDiagonalBlockSize * i,//                                              kDiagonalBlockSize * j,//                                              kDiagonalBlockSize,//                                              kDiagonalBlockSize).norm();//         }//         if (diff > kTolerance) {//           return AssertionFailure()//               << "Preconditioner block " << i << " " << j << " differs "//               << "from expected value by " << diff;//         }//       }//     }//     return AssertionSuccess();//   }//   // Accessors//   int get_num_blocks() { return preconditioner_->num_blocks_; }//   int get_num_clusters() { return preconditioner_->num_clusters_; }//   int* get_mutable_num_clusters() { return &preconditioner_->num_clusters_; }//   const vector<int>& get_block_size() {//     return preconditioner_->block_size_; }//   vector<int>* get_mutable_block_size() {//     return &preconditioner_->block_size_; }//   const vector<int>& get_cluster_membership() {//     return preconditioner_->cluster_membership_;//   }//   vector<int>* get_mutable_cluster_membership() {//     return &preconditioner_->cluster_membership_;//   }//   const set<pair<int, int>>& get_block_pairs() {//     return preconditioner_->block_pairs_;//   }//   set<pair<int, int>>* get_mutable_block_pairs() {//     return &preconditioner_->block_pairs_;//   }//   const std::unordered_set<pair<int, int>, pair_hash>& get_cluster_pairs() {//     return preconditioner_->cluster_pairs_;//   }//   std::unordered_set<pair<int, int>, pair_hash>* get_mutable_cluster_pairs()//   {//     return &preconditioner_->cluster_pairs_;//   }//   bool IsBlockPairInPreconditioner(const int block1, const int block2) {//     return preconditioner_->IsBlockPairInPreconditioner(block1, block2);//   }//   bool IsBlockPairOffDiagonal(const int block1, const int block2) {//     return preconditioner_->IsBlockPairOffDiagonal(block1, block2);//   }//   const BlockRandomAccessSparseMatrix* get_m() {//     return preconditioner_->m_.get();//   }//   int num_rows_;//   int num_cols_;//   int num_eliminate_blocks_;//   int num_camera_blocks_;//   std::unique_ptr<BlockSparseMatrix> A_;//   std::unique_ptr<double[]> b_;//   std::unique_ptr<double[]> D_;//   Preconditioner::Options options_;//   std::unique_ptr<VisibilityBasedPreconditioner> preconditioner_;//   std::unique_ptr<BlockRandomAccessDenseMatrix> schur_complement_;// };// TEST_F(VisibilityBasedPreconditionerTest, OneClusterClusterJacobi) {//   options_.type = CLUSTER_JACOBI;//   preconditioner_.reset(//       new VisibilityBasedPreconditioner(*A_->block_structure(), options_));//   // Override the clustering to be a single clustering containing all//   // the cameras.//   vector<int>& cluster_membership = *get_mutable_cluster_membership();//   for (int i = 0; i < num_camera_blocks_; ++i) {//     cluster_membership[i] = 0;//   }//   *get_mutable_num_clusters() = 1;//   std::unordered_set<pair<int, int>, pair_hash>& cluster_pairs =//   *get_mutable_cluster_pairs(); cluster_pairs.clear();//   cluster_pairs.insert(make_pair(0, 0));//   EXPECT_TRUE(IsSparsityStructureValid());//   EXPECT_TRUE(PreconditionerValuesMatch());//   // Multiplication by the inverse of the preconditioner.//   const int num_rows = schur_complement_->num_rows();//   ConstMatrixRef full_schur_complement(schur_complement_->values(),//                                        num_rows,//                                        num_rows);//   Vector x(num_rows);//   Vector y(num_rows);//   Vector z(num_rows);//   for (int i = 0; i < num_rows; ++i) {//     x.setZero();//     y.setZero();//     z.setZero();//     x[i] = 1.0;//     preconditioner_->RightMultiply(x.data(), y.data());//     z = full_schur_complement//         .selfadjointView<Eigen::Upper>()//         .llt().solve(x);//     double max_relative_difference =//         ((y - z).array() / z.array()).matrix().lpNorm<Eigen::Infinity>();//     EXPECT_NEAR(max_relative_difference, 0.0, kTolerance);//   }// }// TEST_F(VisibilityBasedPreconditionerTest, ClusterJacobi) {//   options_.type = CLUSTER_JACOBI;//   preconditioner_.reset(//       new VisibilityBasedPreconditioner(*A_->block_structure(), options_));//   // Override the clustering to be equal number of cameras.//   vector<int>& cluster_membership = *get_mutable_cluster_membership();//   cluster_membership.resize(num_camera_blocks_);//   static const int kNumClusters = 3;//   for (int i = 0; i < num_camera_blocks_; ++i) {//     cluster_membership[i] = (i * kNumClusters) / num_camera_blocks_;//   }//   *get_mutable_num_clusters() = kNumClusters;//   std::unordered_set<pair<int, int>, pair_hash>& cluster_pairs =//   *get_mutable_cluster_pairs(); cluster_pairs.clear(); for (int i = 0; i <//   kNumClusters; ++i) {//     cluster_pairs.insert(make_pair(i, i));//   }//   EXPECT_TRUE(IsSparsityStructureValid());//   EXPECT_TRUE(PreconditionerValuesMatch());// }// TEST_F(VisibilityBasedPreconditionerTest, ClusterTridiagonal) {//   options_.type = CLUSTER_TRIDIAGONAL;//   preconditioner_.reset(//       new VisibilityBasedPreconditioner(*A_->block_structure(), options_));//   static const int kNumClusters = 3;//   // Override the clustering to be 3 clusters.//   vector<int>& cluster_membership = *get_mutable_cluster_membership();//   cluster_membership.resize(num_camera_blocks_);//   for (int i = 0; i < num_camera_blocks_; ++i) {//     cluster_membership[i] = (i * kNumClusters) / num_camera_blocks_;//   }//   *get_mutable_num_clusters() = kNumClusters;//   // Spanning forest has structure 0-1 2//   std::unordered_set<pair<int, int>, pair_hash>& cluster_pairs =//   *get_mutable_cluster_pairs(); cluster_pairs.clear(); for (int i = 0; i <//   kNumClusters; ++i) {//     cluster_pairs.insert(make_pair(i, i));//   }//   cluster_pairs.insert(make_pair(0, 1));//   EXPECT_TRUE(IsSparsityStructureValid());//   EXPECT_TRUE(PreconditionerValuesMatch());// }}  // namespace internal}  // namespace ceres
 |